Advanced Non-Destructive Fault Isolation Techniques for PCB Substrates Using Magnetic Current Imaging and Terahertz Time Domain Reflectometry

Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.

Author(s):  
Kendall Scott Wills ◽  
Omar Diaz de Leon ◽  
Kartik Ramanujachar ◽  
Charles P. Todd

Abstract In the current generations of devices the die and its package are closely integrated to achieve desired performance and form factor. As a result, localization of continuity failures to either the die or the package is a challenging step in failure analysis of such devices. Time Domain Reflectometry [1] (TDR) is used to localize continuity failures. However the accuracy of measurement with TDR is inadequate for effective localization of the failsite. Additionally, this technique does not provide direct 3-Dimenstional information about the location of the defect. Super-conducting Quantum Interference Device (SQUID) Microscope is useful in localizing shorts in packages [2]. SQUID microscope can localize defects to within 5um in the X and Y directions and 35um in the Z direction. This accuracy is valuable in precise localization of the failsite within the die, package or the interfacial region in flipchip assemblies.


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Meng Yeow Tay ◽  
Wen Qiu ◽  
J. Alton ◽  
...  

Abstract Electro-optical terahertz pulse reflectometry (EOTPR) was introduced last year to isolate faults in advanced IC packages. The EOTPR system provides 10μm accuracy that can be used to non-destructively localize a package-level failure. In this paper, an EOTPR system is used for non-destructive fault isolation and identification for both 2D and 2.5D with TSV structure of flip-chip packages. The experimental results demonstrate higher accuracy of the EOTPR system in determining the distance to defect compared to the traditional time-domain reflectometry (TDR) systems.


Author(s):  
W. Qiu ◽  
M.S. Wei ◽  
J. Gaudestad ◽  
V.V. Talanov

Abstract Space-domain reflectometry (SDR) utilizing scanning superconducting quantum interference device (SQUID) microscopy is a newly developed non-destructive failure analysis (FA) technique for open fault isolation. Unlike the conventional open fault isolation method, time-domain reflectometry (TDR), scanning SQUID SDR provides a truly two-dimensional physical image of device under test with spatial resolution down to 30 μm [1]. In this paper, the SQUID SDR technique is used to isolate dead open faults in flip-chip devices. The experimental results demonstrate the capability of SDR in open fault detection


Author(s):  
Stephane Barbeau ◽  
Jesse Alton ◽  
Martin Igarashi

Abstract Electro Optical Terahertz Pulse Reflectometry (EOTPR), a terahertz based Time Domain Reflectometry (TDR) technique, has been evaluated on Flip Chip (FC) and 3D packages. The reduced size and complexity of these new generations of advanced IC products necessitate non-destructive techniques with increased fault isolation accuracy. The minimum accuracy achievable with conventional TDR is approximately 1000μm. Here, we show that EOTPR is able to differentiate all of the critical features in a 3D FC package, such as μC4 and Through Silicon Via (TSV), and is capable of producing distance-to-defect accuracy of less than 20μm, a significant improvement over conventional microwave based TDR techniques.


Author(s):  
Teoh King Long ◽  
Ko Yin Fern

Abstract In time domain reflectometry (TDR), the main emphasis lies on the reflected waveform. Poor probing contact is one of the common problems in getting an accurate waveform. TDR probe normalization is essential before measuring any TDR waveforms. The advantages of normalization include removal of test setup errors in the original test pulse and the establishment of a measurement reference plane. This article presents two case histories. The first case is about a Plastic Ball Grid Array package consisting of 352 solder balls where the open failure mode was encountered at various terminals after reliability assessment. In the second, a three-digit display LED suspected of an electrical short failure was analyzed using TDR as a fault isolation tool. TDR has been successfully used to perform non-destructive fault isolation in assisting the routine failure analysis of open and short failure. It is shown to be accurate and reduces the time needed to identify fault locations.


Author(s):  
J. Gaudestad ◽  
F. Rusli ◽  
A. Orozco ◽  
M.C. Pun

Abstract A Flip Chip sample failed short between power and ground. The reference unit had 418Ω and the failed unit with the short had 16.4Ω. Multiple fault isolation techniques were used in an attempt to find the failure with thermal imaging and Magnetic Current Imaging being the only techniques capable of localizing the defect. To physically verify the defect location, the die was detached from the substrate and a die cracked was seen using a visible optical microscope.


Author(s):  
L. A. Knauss ◽  
B. M. Frazier ◽  
A. B. Cawthorne ◽  
E. Budiarto ◽  
R. Crandall ◽  
...  

Abstract With the arrival of flip-chip packaging, present tools and techniques are having increasing difficulty meeting failure-analysis needs. Recently a magneticfield imaging system has been used to localize shorts in buried layers of both packages and dies. Until now, these shorts have been powered directly through simple connections at the package. Power shorts are examples of direct shorts that can be powered through connections to Vdd and Vss at the package level. While power shorts are common types of failure, equally important are defects such as logic shorts, which cannot be powered through simple package connections. These defects must be indirectly activated by driving the part through a set of vectors. This makes the magnetic-field imaging process more complicated due to the large background currents present along with the defect current. Magnetic-field imaging is made possible through the use of a SQUID (Superconducting Quantum Interference Device), which is a very sensitive magnetic sensor that can image magnetic fields generated by magnetic materials or currents (such as those in an integrated circuit). The current-density distribution in the sample can then be calculated from the magnetic-field image revealing the locations of shorts and other current anomalies. Presented here is the application of a SQUID-based magnetic-field imaging system for isolation of indirect shorts. This system has been used to investigate shorts in two flip-chip-packaged SRAMs. Defect currents as small as 38 μA were imaged in a background of 1 A. The measurements were made using a lock-in thechnique and image subtraction. The magnetic-field image from one sample is compared with the results from a corresponding infrared-microscope image.


Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


Author(s):  
D. Vallett ◽  
J. Gaudestad ◽  
C. Richardson

Abstract Magnetic current imaging (MCI) using superconducting quantum interference device (SQUID) and giant-magnetoresistive (GMR) sensors is an effective method for localizing defects and current paths [1]. The spatial resolution (and sensitivity) of MCI is improved significantly when the sensor is as close as possible to the current paths and associated magnetic fields of interest. This is accomplished in part by nondestructive removal of any intervening passive layers (e.g. silicon) in the sample. This paper will present a die backside contour-milling process resulting in an edge-to-edge remaining silicon thickness (RST) of < 5 microns, followed by a backside GMR-based MCI measurement performed directly on the ultra-thin silicon surface. The dramatic improvement in resolving current paths in an ESD protect circuit is shown as is nanometer scale resolution of a current density peak due to a power supply shortcircuit defect at the edge of a flip-chip packaged die.


Sign in / Sign up

Export Citation Format

Share Document