scholarly journals Hawking emission of charged particles from an electrically charged spherical black hole with scalar hair

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Avijit Chowdhury

AbstractA static spherically symmetric black hole usually turns out to be either a Schwarzschild black hole or a Reissner-Nordström black hole. This result was summarised by Ruffini and Wheeler as the so-called no hair conjecture which states that for a spherically symmetric black hole only the information about mass (M) and electric charge (e) of the black hole is available for an external observer. In this work, we calculate the emission rate of charged particles from an asymptotically flat charged spherically symmetric black hole endowed with a scalar hair using a semi-classical tunneling formalism. We observe that the total entropy of the black hole contains an energy-dependent part due to the scalar charge. The upper bound on the charge-mass ratio of the emitted particles is also observed to decrease with the scalar charge as well.

2006 ◽  
Vol 74 (6) ◽  
Author(s):  
Cristián Martínez ◽  
Ricardo Troncoso

2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1246
Author(s):  
Chenrui Zhu ◽  
Rong-Jia Yang

We consider whether the new horizon-first law works in higher-dimensional f(R) theory. We firstly obtain the general formulas to calculate the entropy and the energy of a general spherically-symmetric black hole in D-dimensional f(R) theory. For applications, we compute the entropies and the energies of some black hokes in some interesting higher-dimensional f(R) theories.


2019 ◽  
Vol 20 (9) ◽  
pp. 3059-3090 ◽  
Author(s):  
João L. Costa ◽  
José Natário ◽  
Pedro Oliveira

2014 ◽  
Vol 29 (36) ◽  
pp. 1450191 ◽  
Author(s):  
Xiao-Xiong Zeng ◽  
Qiang Li ◽  
Yi-Wen Han

Using exclusively an action variable, we quantize a static, spherically symmetric black hole. The spacings of the quantized entropy spectrum and area spectrum are found to be equal to the values given by Bekenstein. Interestingly, we find the spectra are independent of the hairs of the black holes and the mode of motion of a particle outside the spacetime, which depends only on the intrinsic properties of the gravity. Our result shows that the spectra are universal provided the spacetime owns a horizon.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Alexander Y. Yosifov ◽  
Lachezar G. Filipov

We argue that certain nonviolent local quantum field theory (LQFT) modification considered at the global horizon (r=2M) of a static spherically symmetric black hole can lead to adiabatic leakage of quantum information in the form of Hawking particles. The source of the modification is (i) smooth at r=2M and (ii) rapidly vanishing at r≫2M. Furthermore, we restore the unitary evolution by introducing extra quanta which departs slightly from the generic Hawking emission without changing the experience of an infalling observer (no drama). Also, we suggest that a possible interpretation of the Bekenstein-Hawking bound as entanglement entropy may yield a nonsingular dynamical horizon behavior described by black hole thermodynamics. Hence, by treating gravity as a field theory and considering its coupling to the matter fields in the Minkowski vacuum, we derive the conjectured fluctuations of the background geometry of a black hole.


Sign in / Sign up

Export Citation Format

Share Document