scholarly journals Weak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole

Author(s):  
Xu Lu ◽  
Yi Xie

AbstractWeak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole is investigated and its observables are found. By taking the supermassive black holes Sgr A* and M87* respectively in the Galactic Center and at the center of M87 as lenses, we estimate these observables and analyse possibility of detecting this quantum improvement. It is not feasible to distinguish such a black hole by most observables in the near future except for the apparent size of the shadow. We also note that directly using measured shadow of M87* to constrain this quantum effect requires great care.

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Xu Lu ◽  
Yi Xie

AbstractWe investigate the weak and strong deflection gravitational lensing by a quantum deformed Schwarzschild black hole and find their observables. These lensing observables are evaluated and the detectability of the quantum deformation is assessed, after assuming the supermassive black holes Sgr A* and M87* respectively in the Galactic Center and at the center of M87 as the lenses. We also intensively compare these findings with those of a renormalization group improved Schwarzschild black hole and an asymptotically safe black hole. We find that, among these black holes, it is most likely to test the quantum deformed Schwarzschild black hole via its weak deflection lensing observables in the foreseen future.


2019 ◽  
Vol 34 (20) ◽  
pp. 1950152 ◽  
Author(s):  
Xu Lu ◽  
Yi Xie

We study signals of the weak and strong deflection gravitational lensings by an Extended Uncertainty Principle (EUP) black hole, which is based on a modified Heisenberg relation with an additional correction of position-uncertainty. Gravitational lensing observables, including positions, magnifications and differential time delays between lensed images, are obtained in both scenarios and analyzed for the supermassive black holes (SMBHs) in the Galactic Center (Sgr A*) and M87. We find that, for Sgr A*, measurements on the separation between the primary and secondary images in the weak deflection lensing and the apparent size of the photon sphere in the strong deflection lensing are two feasible ways to constrain EUP, imposing comparable lower bounds on the fundamental scale of EUP as [Formula: see text][Formula: see text]1010 m. For the SMBH in M87, measurements on strong deflection lensing observables are only available and they can give a much bigger lower bound as [Formula: see text][Formula: see text]1013 m. These results might provide hints for probing EUP black holes by gravitational lensings.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sharif ◽  
Sehrish Iftikhar

This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole.


1994 ◽  
Vol 159 ◽  
pp. 351-354
Author(s):  
Leonid M. Ozernoy

To resolve the above dilemma, two essentially different approaches are undertaken: First, a new, detailed analysis of the entire radiation spectrum of Sgr A∗, from radio band up to gamma-rays, is reviewed, which enables us to put substantial constraints on the mass of a putative black hole. The derived upper limit turns out to be too small to allow the black hole to serve as an ‘engine’ for a Seyfert galaxy. Second, analyses of recent data on the 10 KeV gas in the central 200 pc and on star formation history at the Galactic center both make a star burst the likely episode in a recent past. Taken together, the two approaches seem to indicate that the history of the central part of our Galaxy can be better described as that of a starburst, rather than a Seyfert, galaxy.


1998 ◽  
Vol 184 ◽  
pp. 433-434
Author(s):  
A. M. Ghez ◽  
B. L. Klein ◽  
C. McCabe ◽  
M. Morris ◽  
E. E. Becklin

Although the notion that the Milky Way galaxy contains a supermassive central black hole has been around for more than two decades, it has been difficult to prove that one exists. The challenge is to assess the distribution of matter in the few central parsecs of the Galaxy. Assuming that gravity is the dominant force, the motion of the stars and gas in the vicinity of the putative black hole offers a robust method for accomplishing this task, by revealing the mass interior to the radius of the objects studied. Thus objects located closest to the Galactic Center provide the strongest constraints on the black hole hypothesis.


2019 ◽  
Vol 624 ◽  
pp. A112
Author(s):  
J. Armijos-Abendaño ◽  
J. Martín-Pintado ◽  
M. A. Requena-Torres ◽  
E. González-Alfonso ◽  
R. Güsten ◽  
...  

Aims. We study the spatial distribution and kinematics of water emission in a ~8 × 8 pc2 region of the Galactic center (GC) that covers the main molecular features around the supermassive black hole Sagittarius A* (Sgr A*). We also analyze the water excitation to derive the physical conditions and water abundances in the circumnuclear disk (CND) and the “quiescent clouds”. Methods. We presented the integrated line intensity maps of the ortho 110 − 101, and para 202 − 111 and 111 − 000 water transitions observed using the On the Fly mapping mode with the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel. To study the water excitation, we used HIFI observations of the ground state ortho and para H218O transitions toward three selected positions in the vicinity of Sgr A*. In our study, we also used dust continuum measurements of the CND, obtained with the Spectral and Photometric Imaging REceiver (SPIRE) instrument. Using a non-local thermodynamical equilibrium (LTE) radiative transfer code, the water line profiles and dust continuum were modeled, deriving H2O abundances (XH2O), turbulent velocities (V t), and dust temperatures (Td). We also used a rotating ring model to reproduce the CND kinematics represented by the position velocity (PV) diagram derived from para 202 − 111 H2O lines. Results. In our H2O maps we identify the emission associated with known features around Sgr A*: CND, the Western Streamer, and the 20 and 50 km s−1 clouds. The ground-state ortho water maps show absorption structures in the velocity range of [−220,10] km s−1 associated with foreground sources. The PV diagram reveals that the 202 − 111 H2O emission traces the CND also observed in other high-dipole molecules such as SiO, HCN, and CN. Using the non-LTE code, we derive high XH2O of ~(0.1–1.3) × 10−5, V t of 14–23 km s−1 , and Td of 15–45 K for the CND, and the lower XH2O of 4 × 10−8 and V t of 9 km s−1 for the 20 km s−1 cloud. Collisional excitation and dust effects are responsible for the water excitation in the southwest lobe of the CND and the 20 km s−1 cloud, whereas only collisions can account for the water excitation in the northeast lobe of the CND. We propose that the water vapor in the CND is produced by grain sputtering by shocks of 10–20 km s−1, with some contribution of high temperature and cosmic-ray chemistries plus a photon-dominated region chemistry, whereas the low XH2O derived for the 20 km s−1 cloud could be partially a consequence of the water freeze-out on grains.


Sign in / Sign up

Export Citation Format

Share Document