scholarly journals Inflation, proton decay, and Higgs-portal dark matter in $$SO(10) \times U(1)_\psi $$

2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Nobuchika Okada ◽  
Digesh Raut ◽  
Qaisar Shafi

AbstractWe propose a simple non-supersymmetric grand unified theory (GUT) based on the gauge group $$SO(10) \times U(1)_\psi $$SO(10)×U(1)ψ. The model includes 3 generations of fermions in $$\mathbf{16}$$16 ($$+1$$+1), $$\mathbf{10}$$10 ($$-2$$-2) and $$\mathbf{1}$$1 ($$+4$$+4) representations. The $$\mathbf{16}$$16-plets contain Standard Model (SM) fermions plus right-handed neutrinos, and the $$\mathbf{10}$$10-plet and the singlet fermions are introduced to make the model anomaly-free. Gauge coupling unification at $$M_{GUT} \simeq 5 \times 10^{15}{-}10^{16}$$MGUT≃5×1015-1016 GeV is achieved by including an intermediate Pati–Salam breaking at $$M_{I} \simeq 10^{12}{-}10^{11}$$MI≃1012-1011 GeV, which is a natural scale for the seesaw mechanism. For $$M_{I} \simeq 10^{12}{-}10^{11}$$MI≃1012-1011, proton decay will be tested by the Hyper-Kamiokande experiment. The extra fermions acquire their masses from $$U(1)_\psi $$U(1)ψ symmetry breaking, and a $$U(1)_\psi $$U(1)ψ Higgs field drives a successful inflection-point inflation with a low Hubble parameter during inflation, $$H_{inf} \ll M_{I}$$Hinf≪MI. Hence, cosmologically dangerous monopoles produced from SO(10) and PS breakings are diluted away. This is the first SO(10) model we are aware of in which relatively light intermediate mass ($$\sim 10^{10}{-}10^{12}$$∼1010-1012 GeV) primordial monopoles can be adequately suppressed. The reheating temperature after inflation can be high enough for successful leptogenesis. With the Higgs field contents of our model, a $$\mathbf{Z}_2$$Z2 symmetry remains unbroken after GUT symmetry breaking, and the lightest mass eigenstate among linear combinations of the $$\mathbf{10}$$10-plet and the singlet fermions serves as a Higgs-portal dark matter (DM). We identify the parameter regions to reproduce the observed DM relic density while satisfying the current constraint from the direct DM detection experiments. The present allowed region will be fully covered by the future direct detection experiments such as LUX-ZEPLIN DM experiment. In the presence of the extra fermions, the SM Higgs potential is stabilized up to $$M_{I}$$MI.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yoshihiko Abe ◽  
Takashi Toma ◽  
Koichi Yoshioka

Abstract A pseudo Nambu-Goldstone boson (pNGB) is a natural candidate of dark matter in that it avoids the severe direct detection bounds. We show in this paper that the pNGB has another different and interesting face with a higher symmetry breaking scale. Such large symmetry breaking is motivated by various physics beyond the standard model. In this case, the pNGB interaction is suppressed due to the Nambu-Goldstone property and the freeze-out production does not work even with sufficiently large portal coupling. We then study the pNGB dark matter relic abundance from the out-of-equilibrium production via feeble Higgs portal coupling. Further, a possibility is pursued the symmetry breaking scalar in the pNGB model plays the role of inflaton. The inflaton and dark matter are unified in a single field and the pNGB production from inflaton decay is inevitable. For these non-thermally produced relic abundance of pNGB dark matter and successful inflation, we find that the dark matter mass should be less than a few GeV in the wide range of the reheating temperature and the inflaton mass.


2017 ◽  
Vol 32 (09) ◽  
pp. 1741013 ◽  
Author(s):  
Jogesh C. Pati

By way of paying tribute to Abdus Salam, I first recall the ideas of higher unification which the two of us introduced in 1972–73 to remove certain shortcomings in the status of particle physics prevailing then, and then present their current role in theory as well as experiments. These attempts initiated the idea of grand unification and provided the core symmetry-structure [Formula: see text]-color towards such a unification. Embodied with quark-lepton unification and left-right symmetry, the symmetry [Formula: see text] is uniquely chosen as being the minimal one that permits members of a family to belong to a single multiplet. The minimal extension of [Formula: see text] to a simple group is given by the attractive SO(10)-symmetry that was suggested a year later. The new concepts, and the many advantages introduced by this core symmetry (which are, of course, retained by SO(10) as well) are noted. These include explanations of the observed: (i) (rather weird) electroweak and color quantum numbers of the members of a family; (ii) quantization of electric charge; (iii) electron-proton charge-ratio being [Formula: see text]; (iv) the co-existence of quarks and leptons; (v) likewise that of the three basic forces — the weak, electromagnetic and strong; (vi) the non-trivial cancelation of the triangle anomalies within each family; and opening the door for (vii) the appealing concept of parity being an exact symmetry of nature at the fundamental level. In addition, as a distinguishing feature, both because of SU(4)-color and independently because of [Formula: see text] as well, the symmetry [Formula: see text] introduced, to my knowledge, for the first time in the literature: (viii) a new kind of matter — the right-handed (RH) neutrino [Formula: see text] — as a compelling member of each family, and together with it; (ix) (B-L) as a local symmetry. The RH neutrions — contrary to prejudices held in the 1970’s against neutrinos being massive and thereby against the existence of [Formula: see text]’s as well — have in fact turned out to be an asset. They are needed to (a) understand naturally the tiny mass-scales observed in neutrino oscillations by combining the seesaw mechanism together with the unification ideas based on the symmetry SU(4)-color, and also (b) to implement the attractive mechanism of baryogenesis via leptogenesis. The quantitative success of the attempts as regards understanding both (a) and (b) are discussed in Sec. 6. These provide a clear support simultaneously for the following three features: (i) the seesaw mechanism, (ii) the SU(4)-color route to higher unification based on a symmetry like SO(10) or a string-derived [Formula: see text] symmetry in 4D, as opposed to alternative symmetries like SU(5) or even [SU(3)]3, and (iii) the (B-L)-breaking scale being close to the unification scale [Formula: see text] GeV. The observed dramatic meeting of the three gauge couplings in the context of low-energy supersymmetry, at a scale [Formula: see text] GeV, providing strong evidence in favor of the ideas of both grand unification and supersymmetry, is discussed in Sec. 3. The implications of such a meeting in the context of string-unification are briefly mentioned. Weighing the possibility of a stringy origin of gauge coupling unification versus the familiar problem of doublet-triplet splitting in supersymmetric SO(10) (or SU(5)), I discuss the common advantages as well as relative merits and demerits of an effective SO(10) versus a string-derived [Formula: see text] symmetry in 4D. In Sec. 7, I discuss the hallmark prediction of grand unification, viz. proton decay, which is a generic feature of most models of grand unification. I present results of works carried out in collaboration with Babu and Wilczek and most recently with Babu and Tavartkiladze on expectations for decay modes and lifetimes for proton decay, including upper limits for such lifetimes, in the context of a well-motivated class of supersymmetric SO(10)-models. In view of such expectations, I stress the pressing need for having the next-generation large underground detectors — like DUNE and HyperKamiokande — coupled to long-baseline neutrino beams to search simultaneously with high sensitivity for (a) proton decay, (b) neutrino oscillations and (c) supernova neutrinos. It is remarked that the potential for major discoveries through these searches would be high. Some concluding remarks on the invaluable roles of neutrinos and especially of proton decay in probing physics at the highest energy scales are made in the last section. The remarkable success of a class of supersymmetric grand unification models (discussed here) in explaining a large set of distinct phenomena is summarized. Noticing such a success and yet its limitations in addressing some fundamental issues within its premises, such as an understanding of the origin of the three families, and most importantly, the realization of a well-understood unified quantum theory of gravity describing reality, some wishes are expressed on the possible emergence and the desirable role of a string-derived grand-unified bridge between string/M-theory in higher dimensions and the world of phenomena at low energies.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Shrihari Gopalakrishna ◽  
Tuhin Subhra Mukherjee

We study a gauge-singlet vector-like fermion hidden sector dark matter model, in which the communication between the dark matter and the visible standard model sector is via the Higgs-portal scalar-Higgs mixing and also via a hidden sector scalar with loop-level couplings to two gluons and also to two hypercharge gauge bosons induced by a vector-like quark. We find that the Higgs-portal possibility is stringently constrained to be small by the recent LHC di-Higgs search limits, and the loop induced couplings are important to include. In the model parameter space, we present the dark matter relic density, the dark-matter-nucleon direct detection scattering cross section, the LHC diphoton rate from gluon-gluon fusion, and the theoretical upper bounds on the fermion-scalar couplings from perturbative unitarity.


Author(s):  
Abdelhak Djouadi ◽  
Adam Falkowski ◽  
Yann Mambrini ◽  
Jérémie Quevillon

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Satomi Okada

We consider a dark matter scenario in the context of the minimal extension of the Standard Model (SM) with a B-L (baryon number minus lepton number) gauge symmetry, where three right-handed neutrinos with a B-L charge -1 and a B-L Higgs field with a B-L charge +2 are introduced to make the model anomaly-free and to break the B-L gauge symmetry, respectively. The B-L gauge symmetry breaking generates Majorana masses for the right-handed neutrinos. We introduce a Z2 symmetry to the model and assign an odd parity only for one right-handed neutrino, and hence the Z2-odd right-handed neutrino is stable and the unique dark matter candidate in the model. The so-called minimal seesaw works with the other two right-handed neutrinos and reproduces the current neutrino oscillation data. We consider the case that the dark matter particle communicates with the SM particles through the B-L gauge boson (ZB-L′ boson) and obtain a lower bound on the B-L gauge coupling (αB-L) as a function of the ZB-L′ boson mass (mZ′) from the observed dark matter relic density. On the other hand, we interpret the recent LHC Run-2 results on the search for a Z′ boson resonance to an upper bound on αB-L as a function of mZ′. These two constraints are complementary for narrowing down an allowed parameter region for this “Z′ portal” dark matter scenario, leading to a lower mass bound of mZ′≥3.9 TeV.


2015 ◽  
Vol 30 (01) ◽  
pp. 1550006 ◽  
Author(s):  
Alexandre Alves ◽  
F. de Campos ◽  
M. Dias ◽  
J. M. Hoff da Silva

The aim of this paper is to explore the possibility of discovering a fermionic field with mass dimension one, the Elko field, in the Large Hadron Collider. Due to its mass dimension, an Elko can only interact either with Standard Model spinors and gauge fields at one-loop order or at tree level through a quartic interaction with the Higgs field. In this Higgs portal scenario, the Elko is a viable candidate to a dark matter constituent which has been shown to be compatible with relic abundance measurements from WMAP and direct dark matter searches. We propose a search strategy for this dark matter candidate in the channel [Formula: see text] at the [Formula: see text] LHC. We show the LHC potential to discover the Elko considering a triple Higgs–Elkos coupling as small as ~0.5 after 1 ab-1 of integrated luminosity. Some phenomenological consequences of this new particle and its collider signatures are also discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yuta Hamada ◽  
Hikaru Kawai ◽  
Kin-ya Oda ◽  
Kei Yagyu

Abstract We investigate a model with two real scalar fields that minimally generates exponentially different scales in an analog of the Coleman-Weinberg mechanism. The classical scale invariance — the absence of dimensionful parameters in the tree-level action, required in such a scale generation — can naturally be understood as a special case of the multicritical-point principle. This two-scalar model can couple to the Standard Model Higgs field to realize a maximum multicriticality (with all the dimensionful parameters being tuned to critical values) for field values around the electroweak scale, providing a generalization of the classical scale invariance to a wider class of criticality. As a bonus, one of the two scalars can be identified as Higgs-portal dark matter. We find that this model can be consistent with the constraints from dark matter relic abundance, its direct detection experiments, and the latest LHC data, while keeping the perturbativity up to the reduced Planck scale. We then present successful benchmark points satisfying all these constraints: the mass of dark matter is a few TeV, and its scattering cross section with nuclei is of the order of 10−9 pb, reachable in near future experiments. The mass of extra Higgs boson H is smaller than or of the order of 100 GeV, and the cross section of e+e− → ZH can be of fb level for collision energy 250 GeV, targetted at future lepton colliders.


Sign in / Sign up

Export Citation Format

Share Document