scholarly journals AdS black holes with higher derivative corrections in presence of string cloud

2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Tanay K. Dey ◽  
Subir Mukhopadhyay

AbstractWe consider asymptotically AdS black hole solutions in Einstein Gauss Bonnet gravity in presence of string clouds. As in the case of black hole solutions in Gauss Bonnet gravity, it admits three black hole solutions in presence of string clouds as well within a region of the parameter space. Using holography, we have studied the quark–antiquark distance and binding energy in the dual gauge theory.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Mohsen Alishahiha ◽  
Amin Faraji Astaneh ◽  
Ali Naseh

Abstract Using extended island formula we compute entanglement entropy of Hawking radiation for black hole solutions of certain gravitational models containing higher derivative terms. To be concrete we consider two different four dimensional models to compute entropy for both asymptotically flat and AdS black holes. One observes that the resultant entropy follows the Page curve, thanks to the contribution of the island, despite the fact that the corresponding gravitational models might be non-unitary.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Tong-Tong Hu ◽  
Shuo Sun ◽  
Hong-Bo Li ◽  
Yong-Qiang Wang

Abstract Motivated by the recent studies of the novel asymptotically global $$\hbox {AdS}_4$$AdS4 black hole with deformed horizon, we consider the action of Einstein–Maxwell gravity in AdS spacetime and construct the charged deforming AdS black holes with differential boundary. In contrast to deforming black hole without charge, there exists at least one value of horizon for an arbitrary temperature. The extremum of temperature is determined by charge q and divides the range of temperature into several parts. Moreover, we use an isometric embedding in the three-dimensional space to investigate the horizon geometry. The entropy and quasinormal modes of deforming charged AdS black hole are also studied in this paper. Due to the existence of charge q, the phase diagram of entropy is more complicated. We consider two cases of solutions: (1) fixing the chemical potential $$\mu $$μ; (2) changing the value of $$\mu $$μ according to the values of horizon radius and charge. In the first case, it is interesting to find there exist two families of black hole solutions with different horizon radii for a fixed temperature, but these two black holes have same horizon geometry and entropy. The second case ensures that deforming charged AdS black hole solutions can reduce to standard RN–AdS black holes.


1999 ◽  
Vol 14 (04) ◽  
pp. 505-520 ◽  
Author(s):  
SHARMANTHIE FERNANDO ◽  
FREYDOON MANSOURI

We study anti-de Sitter black holes in 2 + 1 dimensions in terms of Chern–Simons gauge theory of the anti-de Sitter group coupled to a source. Taking the source to be an anti-de Sitter state specified by its Casimir invariants, we show how all the relevant features of the black hole are accounted for. The requirement that the source be a unitary representation leads to a discrete tower of excited states which provide a microscopic model for the black hole.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Laura Donnay ◽  
Gaston Giribet ◽  
Julio Oliva

Abstract We investigate whether supertranslation symmetry may appear in a scenario that involves black holes in AdS space. The framework we consider is massive 3D gravity, which admits a rich black hole phase space, including stationary AdS black holes with softly decaying hair. We consider a set of asymptotic conditions that permits such decaying near the boundary, and which, in addition to the local conformal symmetry, is preserved by an extra local current. The corresponding algebra of diffeomorphisms consists of two copies of Virasoro algebra in semi-direct sum with an infinite-dimensional Abelian ideal. We then reorient the analysis to the near horizon region, where infinite-dimensional symmetries also appear. The supertranslation symmetry at the horizon yields an infinite set of non-trivial charges, which we explicitly compute. The zero-mode of these charges correctly reproduces the black hole entropy. In contrast to Einstein gravity, in the higher-derivative theory subleading terms in the near horizon expansion contribute to the near horizon charges. Such terms happen to capture the higher-curvature corrections to the Bekenstein area law.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Salvatore Capozziello ◽  
Gamal G. L. Nashed

Abstract We derive new exact charged d-dimensional black hole solutions for quadratic teleparallel equivalent gravity, $$f(\mathcal{T})=a_0+a_1\mathcal{T}+a_2\mathcal{T}^2$$f(T)=a0+a1T+a2T2, where $$\mathcal T$$T is the torsion scalar, in the case of non-linear electrodynamics. We give a specific form of electromagnetic function and find out the form of the unknown functions that characterize the vielbeins in presence of the electromagnetic field. It is possible to show that the black holes behave asymptotically as AdS solutions and contain, in addition to the monopole and quadrupole terms, other higher order terms whose source is the non-linear electrodynamics field. We calculate the electromagnetic Maxwell field and show that our d-dimensional black hole solutions coincide with the previous obtained one (Awad et al. in J High Energy Phys 13:1706.01773, 2017). The structure of the solutions show that there is a central singularity that is much mild in comparison with the respective one in general relativity. Finally, the thermodynamical properties of the solutions are investigated by calculating the entropy, the Hawking temperature, the heat capacity, and other physical quantities. The most important result of thermodynamics is that the entropy is not proportional to the area of the black hole. This inanition points out that we must have a constrain on the quadrupole term to get a positive entropy otherwise we get a negative value.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041006 ◽  
Author(s):  
Caio F. B. Macedo

In general relativity, astrophysical black holes (BHs) are simple objects, described by just their mass and spin. These simple solutions are not exclusive to general relativity, as they also appear in theories that allow for an extra scalar degree of freedom. Recently, it was shown that some theories which couple a scalar field with the Gauss–Bonnet invariant can have the same classic black hole solutions from general relativity as well as hairy BHs. These scalarized solutions can be stable, having an additional “charge” term that has an impact on the gravitational-wave emission by black hole binaries. In this paper, we overview black hole solutions in scalar-Gauss–Bonnet gravity, considering self-interacting terms for the scalar field. We present the mode analysis for the monopolar and dipolar perturbations around the Schwarzschild black hole in scalar-Gauss–Bonnet, showing the transition between stable and unstable solutions. We also present the time-evolution of scalar Gaussian wave packets, analyzing the impact of the scalar-Gauss–Bonnet term in their evolution. We then present some scalarized solutions, showing that nonlinear coupling functions and self-interacting terms can stabilize them. Finally, we compute the light-ring frequency and the Lyapunov exponent, which possibly estimate the black hole quasinormal modes in the eikonal limit.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Marina David ◽  
Jun Nian ◽  
Leopoldo A. Pando Zayas

Abstract We explore the gravitational implementation of the field theory Cardy-like limit recently used in the successful microstate countings of AdS black hole entropy in various dimensions. On the field theory side, the Cardy-like limit focuses on a particular scaling of conserved electric charges and angular momenta and we first translate this scaling to the gravitational side by a limiting procedure on the black hole parameters. We note that the scaling naturally accompanies a near-horizon region for which these black hole solutions are greatly simplified. Applying the Kerr/CFT correspondence to the near-horizon region, we precisely reproduce the Bekenstein-Hawking entropy of asymptotically AdS4,5,6,7 BPS black holes. Our results explicitly provide a microscopic and universal low energy description for AdS black holes across various dimensions.


Author(s):  
S. N. Sajadi ◽  
N. Riazi ◽  
S. H. Hendi

Abstract In this paper, we study an extended phase space thermodynamics of a nonlinearly charged AdS black hole. We examine both the local and global stabilities, and possible phase transition of the black hole solutions. Finally, we compute quasi-normal modes via scalar perturbations and compare the obtained results with those of Reissner-Nordström black hole.


2021 ◽  
Vol 816 ◽  
pp. 136242
Author(s):  
M. Blagojević ◽  
B. Cvetković

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


Sign in / Sign up

Export Citation Format

Share Document