scholarly journals Universal p-form black holes in generalized theories of gravity

2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Sigbjørn Hervik ◽  
Marcello Ortaggio

AbstractWe explore how far one can go in constructing d-dimensional static black holes coupled to p-form and scalar fields before actually specifying the gravity and electrodynamics theory one wants to solve. At the same time, we study to what extent one can enlarge the space of black hole solutions by allowing for horizon geometries more general than spaces of constant curvature. We prove that a generalized Schwarzschild-like ansatz with an arbitrary isotropy-irreducible homogeneous base space (IHS) provides an answer to both questions, up to naturally adapting the gauge fields to the spacetime geometry. In particular, an IHS–Kähler base space enables one to construct magnetic and dyonic 2-form solutions in a large class of theories, including non-minimally couplings. We exemplify our results by constructing simple solutions to particular theories such as $$R^2$$ R 2 , Gauss–Bonnet and (a sector of) Einstein–Horndeski gravity coupled to certain p-form and conformally invariant electrodynamics.

Author(s):  
Jose Luis Blázquez-Salcedo ◽  
Burkhard Kleihaus ◽  
Jutta Kunz

AbstractBlack holes represent outstanding astrophysical laboratories to test the strong gravity regime, since alternative theories of gravity may predict black hole solutions whose properties may differ distinctly from those of general relativity. When higher curvature terms are included in the gravitational action as, for instance, in the form of the Gauss–Bonnet term coupled to a scalar field, scalarized black holes result. Here we discuss several types of scalarized black holes and some of their properties.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850073 ◽  
Author(s):  
M. Dehghani

In the present work, thermodynamics of the new black hole solutions to the four-dimensional Einstein–Maxwell-dilaton gravity theory have been studied. The dilaton potential, as the solution to the scalar field equations, has been constructed out by a linear combination of three Liouville-type potentials. Three new classes of charged dilatonic black hole solutions, as the exact solutions to the coupled equations of gravitational, electromagnetic and scalar fields, have been introduced. The conserved charge and mass of the new black holes have been calculated by utilizing Gauss's electric law and Abbott–Deser mass proposal, respectively. Also, the temperature, entropy and the electric potential of these new classes of charged dilatonic black holes have been calculated, making use of the geometrical approaches. Through a Smarr-type mass formula, the intensive parameters of the black holes have been calculated and validity of the first law of black hole thermodynamics has been confirmed. A thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. The heat capacity of the new black holes has been calculated and the points of type one- and type two-phase transitions as well as the ranges at which the new charged dilatonic black holes are locally stable have been determined, precisely.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843009 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We obtain spinning boson star solutions and hairy black holes with synchronized hair in the Einstein–Klein–Gordon model, wherein the scalar field is massive, complex and with a nonminimal coupling to the Ricci scalar. The existence of these hairy black holes in this model provides yet another manifestation of the universality of the synchronization mechanism to endow spinning black holes with hair. We study the variation of the physical properties of the boson stars and hairy black holes with the coupling parameter between the scalar field and the curvature, showing that they are, qualitatively, identical to those in the minimally coupled case. By discussing the conformal transformation to the Einstein frame, we argue that the solutions herein provide new rotating boson star and hairy black hole solutions in the minimally coupled theory, with a particular potential, and that no spherically symmetric hairy black hole solutions exist in the nonminimally coupled theory, under a condition of conformal regularity.


2020 ◽  
pp. 312-336
Author(s):  
Piotr T. Chruściel

In this chapter we review what is known about dynamical black hole-solutions of Einstein equations. We discuss the Robinson–Trautman black holes, with or without a cosmological constant. We review the Cauchy-data approach to the construction of black-hole spacetimes. We propose some alternative approaches to a meaningful definition of black hole in a dynamical spacetime, and we review the nonlinear stability results for black-hole solutions of vacuum Einstein equations.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Tong-Tong Hu ◽  
Shuo Sun ◽  
Hong-Bo Li ◽  
Yong-Qiang Wang

Abstract Motivated by the recent studies of the novel asymptotically global $$\hbox {AdS}_4$$AdS4 black hole with deformed horizon, we consider the action of Einstein–Maxwell gravity in AdS spacetime and construct the charged deforming AdS black holes with differential boundary. In contrast to deforming black hole without charge, there exists at least one value of horizon for an arbitrary temperature. The extremum of temperature is determined by charge q and divides the range of temperature into several parts. Moreover, we use an isometric embedding in the three-dimensional space to investigate the horizon geometry. The entropy and quasinormal modes of deforming charged AdS black hole are also studied in this paper. Due to the existence of charge q, the phase diagram of entropy is more complicated. We consider two cases of solutions: (1) fixing the chemical potential $$\mu $$μ; (2) changing the value of $$\mu $$μ according to the values of horizon radius and charge. In the first case, it is interesting to find there exist two families of black hole solutions with different horizon radii for a fixed temperature, but these two black holes have same horizon geometry and entropy. The second case ensures that deforming charged AdS black hole solutions can reduce to standard RN–AdS black holes.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Ángel Rincón ◽  
Victor Santos

AbstractIn this work, we investigate the quasinormal frequencies of a class of regular black hole solutions which generalize Bardeen and Hayward spacetimes. In particular, we analyze scalar, vector and gravitational perturbations of the black hole with the semianalytic WKB method. We analyze in detail the behaviour of the spectrum depending on the parameter p/q of the black hole, the quantum number of angular momentum and the s number. In addition, we compare our results with the classical solution valid for $$p = q = 1$$ p = q = 1 .


Author(s):  
Xian-Hui Ge ◽  
Sang-Jin Sin

Abstract We study charged black hole solutions in 4-dimensional (4D) Einstein–Gauss–Bonnet–Maxwell theory to the linearized perturbation level. We first compute the shear viscosity to entropy density ratio. We then demonstrate how bulk causal structure analysis imposes an upper bound on the Gauss–Bonnet coupling constant in the AdS space. Causality constrains the value of Gauss–Bonnet coupling constant $$\alpha _{GB}$$αGB to be bounded by $$\alpha _{GB}\le 0$$αGB≤0 as $$D\rightarrow 4$$D→4.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Mykola M. Stetsko

Scalar–tensor theory of gravity with nonlinear electromagnetic field, minimally coupled to gravity is considered and static black hole solutions are obtained. Namely, power-law and Born–Infeld nonlinear Lagrangians for the electromagnetic field are examined. Since the cosmological constant is taken into account, it allowed us to investigate the so-called topological black holes. Black hole thermodynamics is studied, in particular temperature of the black holes is calculated and examined and the first law of thermodynamics is obtained with help of Wald’s approach.


Sign in / Sign up

Export Citation Format

Share Document