scholarly journals Comparison of optical potential for nucleons and $$\varDelta $$ resonances

Author(s):  
Arie Bodek ◽  
Tejin Cai

Abstract Precise modeling of neutrino interactions on nuclear targets is essential for neutrino oscillations experiments. The modeling of the energy of final state particles in quasielastic (QE) scattering and resonance production on bound nucleons requires knowledge of both the removal energy of the initial state bound nucleon as well as the average Coulomb and nuclear optical potentials for final state leptons and hadrons. We extract the average values of the real part of the nuclear optical potential for final state nucleons ($$U_{opt}^{QE}$$UoptQE) as a function of the nucleon kinetic energy from inclusive electron scattering data on nuclear targets ($$_\mathbf{6 }^\mathbf{12 }{} \mathbf{C} $$612C+$$_\mathbf{8 }^\mathbf{16 }{} \mathbf{O} $$816O, $$_\mathbf{20 }^\mathbf{40 }{} \mathbf{Ca} $$2040Ca+$$_\mathbf{18 }^\mathbf{40 }{} \mathbf{Ar} $$1840Ar, $$_\mathbf{3 }^\mathbf{6 }{} \mathbf{Li} $$36Li, $$_\mathbf{18 }^\mathbf{27 }{} \mathbf{Al} $$1827Al, $$_\mathbf{26 }^\mathbf{56 }{} \mathbf{Fe} $$2656Fe, $$_\mathbf{82 }^\mathbf{208 }{} \mathbf{Pb} $$82208Pb) in the QE region and compare to calculations. We also extract values of the average of the real part of the nuclear optical potential for a $$\varDelta (1232)$$Δ(1232) resonance in the final state ($$U^\varDelta _{opt}$$UoptΔ) within the impulse approximation. We find that $$U^\varDelta _{opt}$$UoptΔ is more negative than $$U_{opt}^{QE}$$UoptQE with $$U^\varDelta _{opt}\approx $$UoptΔ≈1.5 $$U_{opt}^{QE}$$UoptQE for $$_\mathbf{6 }^\mathbf{12 }{} \mathbf{C} $$612C.

1989 ◽  
Vol 233 (1-2) ◽  
pp. 31-36 ◽  
Author(s):  
T. Uchiyama ◽  
A.E.L. Dieperink ◽  
O. Scholten

Author(s):  
Yasir Alanazi ◽  
Nobuo Sato ◽  
Tianbo Liu ◽  
Wally Melnitchouk ◽  
Pawel Ambrozewicz ◽  
...  

We apply generative adversarial network (GAN) technology to build an event generator that simulates particle production in electron-proton scattering that is free of theoretical assumptions about underlying particle dynamics. The difficulty of efficiently training a GAN event simulator lies in learning the complicated patterns of the distributions of the particles physical properties. We develop a GAN that selects a set of transformed features from particle momenta that can be generated easily by the generator, and uses these to produce a set of augmented features that improve the sensitivity of the discriminator. The new Feature-Augmented and Transformed GAN (FAT-GAN) is able to faithfully reproduce the distribution of final state electron momenta in inclusive electron scattering, without the need for input derived from domain-based theoretical assumptions. The developed technology can play a significant role in boosting the science of existing and future accelerator facilities, such as the Electron-Ion Collider.


2005 ◽  
Vol 20 (14) ◽  
pp. 3089-3092 ◽  
Author(s):  
Arie Bodek

JUPITER (Jlab Unified Program to Investigate nuclear Targets and Electroproduction of Resonances) is a new collaboration between the Nuclear Physics electron scattering and High Energy Physics neutrino scattering communities to investigate the structure of nucleons and nuclei with electron and neutrino Beams. The first phase of JUPITER is Hall C experiment E04-001 on Inclusive Electron Scattering from Nuclear Targets. First data run of E04-001 is currently scheduled for January of 2005.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
R. Weiss ◽  
A. W. Denniston ◽  
J. R. Pybus ◽  
O. Hen ◽  
E. Piasetzky ◽  
...  

1995 ◽  
Vol 52 (3) ◽  
pp. 1216-1231 ◽  
Author(s):  
J. Golak ◽  
H. Wital ◽  
H. Kamada ◽  
D. Hüber ◽  
S. Ishikawa ◽  
...  

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Lei Wang ◽  
Jian Liu ◽  
Rensheng Wang ◽  
Mengjiao Lyu ◽  
Chang Xu ◽  
...  

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Edmond Iancu ◽  
Yair Mulian

Abstract Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the “real” next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in [1]. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO corrections to inclusive dijet production are then obtained by integrating out the kinematics of any of the three final partons. We explicitly work out the interesting limits where the unmeasured parton is either a soft gluon, or the product of a collinear splitting. We find the expected results in both limits: the B-JIMWLK evolution of the leading-order dijet cross-section in the first case (soft gluon) and, respectively, the DGLAP evolution of the initial and final states in the second case (collinear splitting). The “virtual” NLO corrections to dijet production will be presented in a subsequent publication.


Sign in / Sign up

Export Citation Format

Share Document