scholarly journals Observational constraints in metric-affine gravity

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Sebastian Bahamonde ◽  
Jorge Gigante Valcarcel

AbstractWe derive the main classical gravitational tests for a recently found vacuum solution with spin and dilation charges in the framework of Metric-Affine gauge theory of gravity. Using the results of the perihelion precession of the star S2 by the GRAVITY collaboration and the gravitational redshift of Sirius B white dwarf we constrain the corrections provided by the torsion and nonmetricity fields for these effects.

1999 ◽  
Vol 08 (04) ◽  
pp. 399-416 ◽  
Author(s):  
FRIEDRICH W. HEHL ◽  
ALFREDO MACIAS

In continuing our series on metric–affine gravity (see Gronwald, Int. J. Mod. Phys.D6, 263 (1997) for Part I), we review the exact solutions of this theory.


1997 ◽  
Vol 06 (03) ◽  
pp. 263-303 ◽  
Author(s):  
Frank Gronwald

We give a self-contained introduction into the metric–affine gauge theory of gravity. Starting from the equivalence of reference frames, the prototype of a gauge theory is presented and illustrated by the example of Yang–Mills theory. Along the same lines we perform a gauging of the affine group and establish the geometry of metric–affine gravity. The results are put into the dynamical framework of a classical field theory. We derive subcases of metric-affine gravity by restricting the affine group to some of its subgroups. The important subcase of general relativity as a gauge theory of tranlations is explained in detail.


1989 ◽  
Vol 04 (07) ◽  
pp. 621-628 ◽  
Author(s):  
KIYOSHI KAMIMURA ◽  
TAKESHI FUKUYAMA

In the gauge theory of gravity, SO'(5) gauge fields are shown to be related to vierbein and spin connection by a form of gauge transformation with the transformation matrix parametrized by an S4 unit vector [Formula: see text]. It is understood as the collective coordinate parametrizing the vacuum solution of maximal symmetric space. The action of pure gravity theory is determined uniquely (up to surface term) by the requirement that the pure gauge configuration of SO'(5) gauge fields gives the maximally symmetric solution of the equation of motion, i.e., de Sitter space of constant curvature.


2007 ◽  
Vol 04 (08) ◽  
pp. 1239-1257 ◽  
Author(s):  
CARLOS CASTRO

A novel Chern–Simons E8 gauge theory of gravity in D = 15 based on an octicE8 invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of gravity with the other forces is very plausible within the framework of a supersymmetric extension (to incorporate spacetime fermions) of this Chern–Simons E8 gauge theory. We review the construction showing why the ordinary 11D Chern–Simons gravity theory (based on the Anti de Sitter group) can be embedded into a Clifford-algebra valued gauge theory and that an E8 Yang–Mills field theory is a small sector of a Clifford (16) algebra gauge theory. An E8 gauge bundle formulation was instrumental in understanding the topological part of the 11-dim M-theory partition function. The nature of this 11-dim E8 gauge theory remains unknown. We hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this work may shed some light into solving this problem after a dimensional reduction.


2012 ◽  
Vol 07 ◽  
pp. 158-164 ◽  
Author(s):  
JAMES M. NESTER ◽  
CHIH-HUNG WANG

Many alternative gravity theories use an independent connection which leads to torsion in addition to curvature. Some have argued that there is no physical need to use such connections, that one can always use the Levi-Civita connection and just treat torsion as another tensor field. We explore this issue here in the context of the Poincaré Gauge theory of gravity, which is usually formulated in terms of an affine connection for a Riemann-Cartan geometry (torsion and curvature). We compare the equations obtained by taking as the independent dynamical variables: (i) the orthonormal coframe and the connection and (ii) the orthonormal coframe and the torsion (contortion), and we also consider the coupling to a source. From this analysis we conclude that, at least for this class of theories, torsion should not be considered as just another tensor field.


2015 ◽  
Vol 751 ◽  
pp. 131-134 ◽  
Author(s):  
O. Cebecioğlu ◽  
S. Kibaroğlu

2017 ◽  
Vol 96 (6) ◽  
Author(s):  
Milutin Blagojević ◽  
Branislav Cvetković ◽  
Yuri N. Obukhov

Sign in / Sign up

Export Citation Format

Share Document