scholarly journals Time reclustering for jet quenching studies

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Liliana Apolinário ◽  
André Cordeiro ◽  
Korinna Zapp

AbstractThe physics program of ultra-relativistic heavy-ion collisions at the Large Hadron Collider (LHC) and Relativistic Heavy-Ion Collider (RHIC) has brought a unique insight into the hot and dense QCD matter created in such collisions, the Quark-Gluon Plasma (QGP). Jet quenching, a collection of medium-induced modifications of the jets’ internal structure that occur through their development in dense QCD matter, has a unique potential to assess the time structure of the produced medium. In this work, we perform an exploratory study to identify jet reclustering tools that can potentiate future QGP tomographic measurements with jets at current energies. Our results show that by using the inverse of formation time to obtain the jet clustering history, one can identify more accurately the time structure of QCD emissions inside jets, even in the presence of jet quenching.

2018 ◽  
Vol 172 ◽  
pp. 05010 ◽  
Author(s):  
Christine Nattrass

The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early in the collision fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed.


2015 ◽  
Vol 30 (32) ◽  
pp. 1550162 ◽  
Author(s):  
Partha Bagchi ◽  
Ajit M. Srivastava

Rapid thermalization in ultra-relativistic heavy-ion collisions leads to fast changing potential between a heavy quark and antiquark from zero temperature potential to the finite temperature one. Time-dependent perturbation theory can then be used to calculate the survival probability of the initial quarkonium state. In view of very short time scales of thermalization at relativistic heavy-ion collider (RHIC) and large hadron collider (LHC) energies, we calculate the survival probability of [Formula: see text] and [Formula: see text] using sudden approximation. Our results show that quarkonium decay may be significant even when temperature of quark–gluon plasma (QGP) remains low enough so that the conventional quarkonium melting due to Debye screening is ineffective.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 61 ◽  
Author(s):  
Georg Wolschin

The rapid thermalization of quarks and gluons in the initial stages of relativistic heavy-ion collisions is treated using analytic solutions of a nonlinear diffusion equation with schematic initial conditions, and for gluons with boundary conditions at the singularity. On a similarly short time scale of t ≤ 1 fm/c, the stopping of baryons is accounted for through a QCD-inspired approach based on the parton distribution functions of valence quarks, and gluons. Charged-hadron production is considered phenomenologically using a linear relativistic diffusion model with two fragmentation sources, and a central gluonic source that rises with ln 3 ( s N N ) . The limiting-fragmentation conjecture that agrees with data at energies reached at the Relativistic Heavy-Ion Collider (RHIC) is found to be consistent with Large Hadron Collider (LHC) data for Pb-Pb at s N N = 2.76 and 5.02 TeV. Quarkonia are used as hard probes for the properties of the quark-gluon plasma (QGP) through a comparison of theoretical predictions with recent CMS, ALICE and LHCb data for Pb-Pb and p-Pb collisions.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shusu Shi

Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC).


1991 ◽  
Vol 46 (12) ◽  
pp. 1037-1042 ◽  
Author(s):  
G. Wolschin

Abstract Mean transit times in heavy-ion collisions are calculated as functions of the relativistic incident energy and the impact parameter. As a consequence of special relativity, they become constant in a central collision of O with Pb at T~0.15TeV. Together with a geometrical estimate of the maximum energy densities in the interaction region, it is argued that heavy ions in a large hadron collider may produce a quark-gluon plasma due to the plateau in the transit times at ultra-relativistic energies


2015 ◽  
Vol 24 (02) ◽  
pp. 1530001 ◽  
Author(s):  
Guang-You Qin

The exploration of the strong-interaction matter under extreme conditions is one of the main goals of relativistic heavy-ion collisions. We provide some of the main results on the novel properties of quark-gluon plasma, with particular focus given to the strong collectivity and the color opaqueness exhibited by such hot and dense matter produced in high-energy nuclear collisions at RHIC and the LHC.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Md. Nasim ◽  
Roli Esha ◽  
Huan Zhong Huang

For over a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging fromsNN=7.7 GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson (D-meson),J/ψ, and leptons from heavy-flavor decay at RHIC and LHC energy.


2015 ◽  
Vol 24 (11) ◽  
pp. 1530012 ◽  
Author(s):  
J.-P. Blaizot ◽  
Y. Mehtar-Tani

We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark–gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter [Formula: see text]. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.


2019 ◽  
Vol 69 (1) ◽  
pp. 417-445 ◽  
Author(s):  
Xin Dong ◽  
Yen-Jie Lee ◽  
Ralf Rapp

The ultrarelativistic heavy-ion programs at the Relativistic Heavy Ion Collider and the Large Hadron Collider have entered an era of quantitative analysis of quantum chromodynamics (QCD) at high temperatures. The remarkable discovery of the strongly coupled quark–gluon plasma (sQGP), as deduced from its hydrodynamic behavior at long wavelengths, calls for probes that can reveal its inner workings. Charm- and bottom-hadron spectra offer unique insights into the transport properties and the microscopic structure of the QCD medium created in these collisions. At low momentum the Brownian motion of heavy quarks in the sQGP gives access to their diffusion constant, at intermediate momentum these quarks give insight into hadronization mechanisms, and at high momentum they are expected to merge into a radiative-energy loss regime. We review recent experimental and theoretical achievements on measuring a variety of heavy-flavor observables, characterizing the different regimes in momentum and extracting pertinent transport coefficients to unravel the structure of the sQGP and its hadronization.


Sign in / Sign up

Export Citation Format

Share Document