scholarly journals Feebly-interacting particles: FIPs 2020 workshop report

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
P. Agrawal ◽  
M. Bauer ◽  
J. Beacham ◽  
A. Berlin ◽  
A. Boyarsky ◽  
...  

AbstractWith the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Yohei Ema ◽  
Filippo Sala ◽  
Ryosuke Sato

We use Super-K data to place new strong limits on interactions of sub-GeV Dark Matter (DM) with nuclei, that rely on the DM flux inevitably induced by cosmic-ray upscatterings. We derive analogous sensitivities at Hyper-K and DUNE and compare them with others, e.g. at JUNO. Using simplified models, we find that our proposal tests genuinely new parameter space, allowed both by theoretical consistency and by other direct detection experiments, cosmology, meson decays and our recast of monojet. Our results thus motivate and shape a new physics case for any large volume detector sensitive to nuclear recoils.


2021 ◽  
Vol 71 (1) ◽  
pp. 279-313
Author(s):  
Gaia Lanfranchi ◽  
Maxim Pospelov ◽  
Philip Schuster

At the dawn of a new decade, particle physics faces the challenge of explaining the mystery of dark matter, the origin of matter over antimatter in the Universe, the apparent fine-tuning of the electroweak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves New Physics at mass scales comparable to that of familiar matter—below the GeV scale but with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and existing data may even provide hints of this possibility. Emboldened by the lessons of the LHC, a vibrant experimental program to discover such physics is underway, guided by a systematic theoretical approach that is firmly grounded in the underlying principles of the Standard Model. We give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs, and we focus in particular on accelerator-based experiments.


2016 ◽  
Vol 31 (22) ◽  
pp. 1643004 ◽  
Author(s):  
Graham D. Kribs ◽  
Ethan T. Neil

We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Oleksii Matsedonskyi ◽  
James Unwin ◽  
Qingyun Wang

Abstract Restoration of the electroweak symmetry at temperatures around the Higgs mass is linked to tight phenomenological constraints on many baryogenesis scenarios. A potential remedy can be found in mechanisms of electroweak symmetry non-restoration (SNR), in which symmetry breaking is extended to higher temperatures due to new states with couplings to the Standard Model. Here we show that, in the presence of a second Higgs doublet, SNR can be realized with only a handful of new fermions which can be identified as viable dark matter candidates consistent with all current observational constraints. The competing requirements on this class of models allow for SNR at temperatures up to ∼TeV, and imply the presence of sub-TeV new physics with sizable interactions with the Standard Model. As a result this scenario is highly testable with signals in reach of next-generation collider and dark matter direct detection experiments.


2018 ◽  
Vol 168 ◽  
pp. 06008
Author(s):  
Seodong Shin

In the scenarios of dark matter (DM) with a non-minimal dark sector, we revisit a new detection strategy of observing two or three simultaneous signals from inelastic scattering of a boosted DM [1]. The relativistically incoming DM can scatter off inelastically to a heavier unstable dark sector particle which decays back in to the DM associated with visible Standard Model particles inside large volume neutrino detectors. The existence of the secondary procedure renders us to separate it from conventional neutrino scattering background. The relativistically incoming DM can come from the universe by the annihilation of heavy DM component in an inelastic boosted DM scenario or produced by the beam bombardments in fixed target experiments.


2021 ◽  
pp. 108129
Author(s):  
M. Bondi ◽  
A. Celentano ◽  
R.R. Dusaev ◽  
D.V. Kirpichnikov ◽  
M.M. Kirsanov ◽  
...  

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
D. W. P. Amaral ◽  
D. G. Cerdeño ◽  
A. Cheek ◽  
P. Foldenauer

AbstractThe recent measurement of the muon anomalous magnetic moment by the Fermilab E989 experiment, when combined with the previous result at BNL, has confirmed the tension with the SM prediction at $$4.2\,\sigma $$ 4.2 σ  CL, strengthening the motivation for new physics in the leptonic sector. Among the different particle physics models that could account for such an excess, a gauged $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ stands out for its simplicity. In this article, we explore how the combination of data from different future probes can help identify the nature of the new physics behind the muon anomalous magnetic moment. In particular, we contrast $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ with an effective $$U(1)_{L_\mu }$$ U ( 1 ) L μ -type model. We first show that muon fixed target experiments (such as NA64$$\mu $$ μ ) will be able to measure the coupling of the hidden photon to the muon sector in the region compatible with $$(g-2)_\mu $$ ( g - 2 ) μ , and will have some sensitivity to the hidden photon’s mass. We then study how experiments looking for coherent elastic neutrino-nucleus scattering (CE$$\nu $$ ν NS) at spallation sources will provide crucial additional information on the kinetic mixing of the hidden photon. When combined with NA64$$\mu $$ μ results, the exclusion limits (or reconstructed regions) of future CE$$\nu $$ ν NS detectors will also allow for a better measurement of the mediator mass. Finally, the observation of nuclear recoils from solar neutrinos in dark matter direct detection experiments will provide unique information about the coupling of the hidden photon to the tau sector. The signal expected for $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ is larger than for $$U(1)_{L_\mu }$$ U ( 1 ) L μ with the same kinetic mixing, and future multi-ton liquid xenon proposals (such as DARWIN) have the potential to confirm the former over the latter. We determine the necessary exposure and energy threshold for a potential $$5\,\sigma $$ 5 σ discovery of a $$U(1)_{L_\mu -L_{\tau }}$$ U ( 1 ) L μ - L τ boson, and we conclude that the future DARWIN observatory will be able to carry out this measurement if the experimental threshold is lowered to $$1\,{\mathrm {keV}}_{\mathrm {nr}} $$ 1 keV nr .


Author(s):  
DAVID G. CERDEÑO

Dark matter is an abundant component of our Universe and its detection and identification constitutes one of the most challenging goals in modern Physics. Particle Physics provides well motivated candidates for dark matter, among which a generic weakly-interacting massive particle (WIMP) stands out for its simplicity and the fact that WIMP candidates can be found in many theories proposing new physics at the TeV scale, such as Supersymmetry, models with Universal Extra Dimensions and Little Higgs Theories. I will review the properties of some of the main WIMP candidates and their detectability (with special emphasis on direct detection experiments). I will also address the strategies that can be used to discriminate among them in the case of a future detection.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Itay M. Bloch ◽  
Andrea Caputo ◽  
Rouven Essig ◽  
Diego Redigolo ◽  
Mukul Sholapurkar ◽  
...  

Abstract Motivated by the recent XENON1T results, we explore various new physics models that can be discovered through searches for electron recoils in $$ \mathcal{O} $$ O (keV)-threshold direct-detection experiments. First, we consider the absorption of axion-like particles, dark photons, and scalars, either as dark matter relics or being produced directly in the Sun. In the latter case, we find that keV mass bosons produced in the Sun provide an adequate fit to the data but are excluded by stellar cooling constraints. We address this tension by introducing a novel Chameleon-like axion model, which can explain the excess while evading the stellar bounds. We find that absorption of bosonic dark matter provides a viable explanation for the excess only if the dark matter is a dark photon or an axion. In the latter case, photophobic axion couplings are necessary to avoid X-ray constraints. Second, we analyze models of dark matter-electron scattering to determine which models might explain the excess. Standard scattering of dark matter with electrons is generically in conflict with data from lower-threshold experiments. Momentum-dependent interactions with a heavy mediator can fit the data with dark matter mass heavier than a GeV but are generically in tension with collider constraints. Next, we consider dark matter consisting of two (or more) states that have a small mass splitting. The exothermic (down)scattering of the heavier state to the lighter state can fit the data for keV mass splittings. Finally, we consider a subcomponent of dark matter that is accelerated by scattering off cosmic rays, finding that dark matter interacting though an $$ \mathcal{O} $$ O (100 keV)-mass mediator can fit the data. The cross sections required in this scenario are, however, typically challenged by complementary probes of the light mediator. Throughout our study, we implement an unbinned Monte Carlo analysis and use an improved energy reconstruction of the XENON1T events.


Sign in / Sign up

Export Citation Format

Share Document