scholarly journals An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids

2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Michael Kuron ◽  
Cameron Stewart ◽  
Joost de Graaf ◽  
Christian Holm

Abstract  Most biological fluids are viscoelastic, meaning that they have elastic properties in addition to the dissipative properties found in Newtonian fluids. Computational models can help us understand viscoelastic flow, but are often limited in how they deal with complex flow geometries and suspended particles. Here, we present a lattice Boltzmann solver for Oldroyd-B fluids that can handle arbitrarily shaped fixed and moving boundary conditions, which makes it ideally suited for the simulation of confined colloidal suspensions. We validate our method using several standard rheological setups and additionally study a single sedimenting colloid, also finding good agreement with the literature. Our approach can readily be extended to constitutive equations other than Oldroyd-B. This flexibility and the handling of complex boundaries hold promise for the study of microswimmers in viscoelastic fluids. Graphic abstract

Author(s):  
Debabrata Datta ◽  
T K Pal

Lattice Boltzmann models for diffusion equation are generally in Cartesian coordinate system. Very few researchers have attempted to solve diffusion equation in spherical coordinate system. In the lattice Boltzmann based diffusion model in spherical coordinate system extra term, which is due to variation of surface area along radial direction, is modeled as source term. In this study diffusion equation in spherical coordinate system is first converted to diffusion equation which is similar to that in Cartesian coordinate system by using proper variable. The diffusion equation is then solved using standard lattice Boltzmann method. The results obtained for the new variable are again converted to the actual variable. The numerical scheme is verified by comparing the results of the simulation study with analytical solution. A good agreement between the two results is established.


2016 ◽  
pp. 38-1-38-30 ◽  
Author(s):  
G Falcucci ◽  
S Melchionna ◽  
S Ubertini ◽  
Sauro Succi

Author(s):  
Sonam Tanwar

This chapter develops a meshless formulation of lattice Boltzmann method for simulation of fluid flows within complex and irregular geometries. The meshless feature of proposed technique will improve the accuracy of standard lattice Boltzmann method within complicated fluid domains. Discretization of such domains itself may introduce significant numerical errors into the solution. Specifically, in phase transition or moving boundary problems, discretization of the domain is a time-consuming and complex process. In these problems, at each time step, the computational domain may change its shape and need to be re-meshed accordingly for the purpose of accuracy and stability of the solution. The author proposes to combine lattice Boltzmann method with a Galerkin meshfree technique popularly known as element-free Galerkin method in this chapter to remove the difficulties associated with traditional grid-based methods.


2017 ◽  
Vol 6 (4) ◽  
pp. 16-34 ◽  
Author(s):  
Ridha Djebali

The aim of the present work is the confrontation of three numerical techniques results to optimize the operating conditions of thermal plasma spraying process. The Lattice Boltzmann method (LBM) is used to scrutinize dispersion effects of injection parameters on droplet impact characteristics when impacting substrate. The validation of the developed model shows good agreement with former findings. The results of spraying Zirconia particles give the values Kmin=88.2, Kmax=367.4, Kmean=273.8 and a standard deviation of 48.0 for the Sommerfeld number. The Taguchi experimental design study is conducted for five operating parameters of two levels. The ensuing retained factors combination give Kmean=258.9. To assess drawn conclusions, confirmation test was performed using the Jets&Poudres software. The results show that the prior way is to coat and particles of dp< 40.3 µm have evaporated, particles 40.3 = dp = 49 µm are fully molten and all particles of dp = 71.9 µm arrive fully solid.


2012 ◽  
Vol 23 (05) ◽  
pp. 1250040 ◽  
Author(s):  
JIAN GUO ZHOU

A multiple-relaxation-time (MRT) collision operator is introduced into the author's rectangular lattice Boltzmann method for simulating fluid flows. The model retains both the advantages and the standard procedure of using a constant transformation matrix in the conventional MRT scheme on a square lattice, leading to easy implementation in the algorithm. This allows flow problems characterized by dominant feature in one direction to be solved more efficiently. Two numerical tests have been carried out and shown that the proposed model is able to capture complex flow characteristics and generate an accurate solution if an appropriate lattice ratio is used. The model is found to be more stable compared to the original rectangular lattice Boltzmann method using the single relaxation time.


Author(s):  
Ru Yang ◽  
Chin-Sheng Wang

A Lattice Boltzmann method is employed to investigate the flow characteristics and the heat transfer phenomenon between two parallel plates separated by a micro-gap. A nine-velocity model and an internal energy distribution model are used to obtain the mass, momentum and temperature distributions. It is shown that for small Knudsen numbers (Kn), the current results are in good agreement with those obtained from the traditional Navier-Stokes equation with non-slip boundary conditions. As the value of Kn is increased, it is found that the non-slip condition may no longer be valid at the wall boundary and that the flow behavior changes to one of slip-flow. In slip flow regime, the present results is still in good agreement with slip-flow solution by Navier Stokes equations. The non-linear nature of the pressure and friction distribution for micro-channel flow is gieven. Finally, the current investigation presents a prediction of the temperature distribution for micro-channel flow under the imposed conditions of an isothermal boundary.


Author(s):  
Shin K. Kang ◽  
Yassin A. Hassan

For moving boundary problems, previous body-conformal grid methods require frequent re-meshing as the boundary moves, thus increasing computational cost. An immersed boundary method (IBM) is an attractive method to resolve the problem since it is based on the fixed, non-body-conformal grids. In the IBM, force density terms are used so that no-slip boundary condition is satisfied on the boundary. On the other hand, lattice Boltzmann methods (LBMs) have been used as an alternative of Navier-Stokes equation method due to their efficiency to parallelize and simplicity to implement. The common feature of the IBM and the LBM of using non-body-conformal grids motivated the use of the IBM in the lattice Boltzmann method frame, which is usually called an immersed boundary-lattice Boltzmann method (IB-LBM). Besides, a split-forcing property in the LBM, due to its kinetic nature, facilitates the use of direct-forcing IBM. For the evaluation of boundary force density term, we need to adopt an interpolation scheme because the boundary, in general, does not match computational nodes. The interpolation schemes can be classified into diffuse and sharp interface schemes. The former usually uses the discrete delta function to evaluate the boundary force on the prescribed boundary points, while the latter uses interpolation from neighboring fluid nodes to evaluate the boundary force on the computation node either inside or outside closest to the boundary. In the diffuse scheme, the boundary force density terms evaluated on the boundary points should be distributed onto neighboring computational nodes using the discrete delta functions so that the boundary effect may exert on computational process. The objective of this study is to compare two interface schemes simultaneously for a moving boundary problem under the IB-LBM and to understand advantages and disadvantages of each scheme. We considered a problem of flow induced by inline oscillation of a circular cylinder since both experimental and body-conformal grid method results are available for this problem. Velocity results from both schemes showed overall good agreement with experimental data. However, the sharp interface scheme showed spurious oscillations in the surface force coefficient and pressure fields, although after filtering or smoothing, the force coefficients showed good agreement with the body-fitted results. In contrast, the diffuse interface scheme produced smooth variations in the surface force coefficient but over-predicted the absolute values especially at phase angles with the high magnitude of accelerations. These results can be attributed to the use of discrete delta functions. We could reduce the over-prediction by considering the effect of the diffuse area.


Sign in / Sign up

Export Citation Format

Share Document