Effects of the blade shape on the slicing of soft gels

2021 ◽  
Vol 44 (12) ◽  
Author(s):  
Serge Mora
Keyword(s):  
2020 ◽  
Vol 324 (2) ◽  
pp. 242-251
Author(s):  
L.P. Flyachinskaya ◽  
P.A. Lezin

The paper considers the development of Ciliatocardium ciliatum from the stage of straight hinge to juvenile. In the White Sea the spawning of C. ciliatum begins at the end of June, larvae at different stages of development occur in plankton until the end of September. The earliest of the larvae found had shell lengths of 123–130 µm. The paper first examined the anatomy and structure of the larval shell of C. ciliatum. During the development, the main stages of organogenesis were described and special attention was paid to the formation of the digestive and muscular systems. The digestive system begins to function when the larva reaches a size of 170–180 µm. The digestive gland has a two-blade shape and is shifted to the right side. The foot is formed at a size of 230 µm, the gill rudiments appear when the larva reaches 270 µm. The development of the larval shell and larval hinge of the mollusc is considered in detail. The development of the larval shell of C. ciliatum is similar to the development of other family members. Throughout all the larval stages, the shell has a rounded shape with a low umbos, and the prodissoconch II has a clearly visible concentric structure. The C. ciliatum larval hinge is characterized by weak differentiation and the absence of pronounced cardinal teeth typical for other Cardiidae. However, the lateral structures of the castle – ridges and flanges – are well developed. The ligament begins to form at a size of 240–250 µm and occupies a lateral position. The settlement of the cockle takes place in September in the subtidal zone. After the metamorphosis, a large radial sculpture is formed on the dissoconch and a number of small spikes are formed at the rib of the posterior shoulder.


Author(s):  
Ahmed M Nagib Elmekawy ◽  
Hassan A Hassan Saeed ◽  
Sadek Z Kassab

Three-dimensional CFD simulations are carried out to study the increase of power generated from Savonius vertical axis wind turbines by modifying the blade shape and blade angel of twist. Twisting angle of the classical blade are varied and several proposed novel blade shapes are introduced to enhance the performance of the wind turbine. CFD simulations have been performed using sliding mesh technique of ANSYS software. Four turbulence models; realizable k -[Formula: see text], standard k - [Formula: see text], SST transition and SST k -[Formula: see text] are utilized in the simulations. The blade twisting angle has been modified for the proposed dimensions and wind speed. The introduced novel blade increased the power generated compared to the classical shapes. The two proposed novel blades achieved better power coefficients. One of the proposed models achieved an increase of 31% and the other one achieved 32.2% when compared to the classical rotor shape. The optimum twist angel for the two proposed models achieved 5.66% and 5.69% when compared with zero angle of twist.


2020 ◽  
Vol 37 (3) ◽  
pp. 259-265
Author(s):  
Kang Da ◽  
Wang Yongliang ◽  
Zhong Jingjun ◽  
Liu Zihao

AbstractThe blade deformation caused by aerodynamic and centrifugal loads during operating makes blade configurations different from their stationary shape. Based on the load incremental approach, a novel pre-deformation method for cold blade shape is provided in order to compensate blade deformation under running. Effect of nonlinear blade stiffness is considered by updating stiffness matrix in response to the variation of blade configuration when calculating deformations. The pre-deformation procedure is iterated till a converged cold blade shape is obtained. The proposed pre-deformation method is applied to a transonic compressor rotor. Effect of load conditions on blade pre-deformation is also analyzed. The results show that the pre-deformation method is easy to implement with fast convergence speed. Neither the aerodynamic load nor centrifugal load can be neglected in blade pre-deformation.


2012 ◽  
Vol 11 (8) ◽  
pp. 662-663 ◽  
Author(s):  
Jae-Won Shin ◽  
Dennis E. Discher
Keyword(s):  

1969 ◽  
Vol 11 (5) ◽  
pp. 454-467 ◽  
Author(s):  
K. Murugesan ◽  
J. W. Railly

An extension of Martensen's method is described which permits an exact solution of the inverse or blade design problem. An equation is derived for the normal velocity distributed about a given contour when a given tangential velocity is imposed about the contour and from this normal velocity an initial arbitrarily chosen blade shape may be successively modified until a blade is found having a desired surface velocity distribution. Five examples of the method are given.


2021 ◽  
pp. 1-37
Author(s):  
Mabrouk Mosbahi ◽  
Mouna Derbel ◽  
Mariem Lajnef ◽  
Bouzid Mosbahi ◽  
Zied Driss ◽  
...  

Abstract Twisted Darrieus water turbine is receiving growing attentiveness for small-scale hydropower generation. Accordingly, the need for raised water energy conversion incentivizes researchers to focalise on the blade shape optimization of twisted Darrieus turbine. In view of this, an experimental analysis has been performed to appraise the efficiency of a spiral Darrieus water rotor in the present work. To better the performance parameters of the studied water rotor with twisted blades, three novel blade shapes, namely U-shaped blade, V-shaped blade and W-shaped blade, have been numerically tested using a computational fluid dynamics three-dimensional numerical model. Maximum power coefficient of Darrieus rotor reaches 0.17 at 0.63 tip-speed ratio using twisted blades. Using V-shaped blades, maximum power coefficient has been risen up to 0.185. The current study could be practically applied to provide more effective employment of twisted Darrieus turbines and to improve the generated power from flowing water such as river streams, tidal currents, or other man made water canals.


2003 ◽  
Vol 29 (5) ◽  
pp. 607-613 ◽  
Author(s):  
Satoshi Akiyama ◽  
Kazumi Kozawa ◽  
Hideto Yoshida

Sign in / Sign up

Export Citation Format

Share Document