Symmetry breaking and conformal coupling with a generalized Higgs potential and the role of the generalized Duffin-Loret equation in the early universe

2014 ◽  
Vol 129 (10) ◽  
Author(s):  
Rami Ahmad El-Nabulsi
2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


1997 ◽  
Vol 56 (20) ◽  
pp. 12947-12960 ◽  
Author(s):  
A. Zawadowski ◽  
G. Zaránd ◽  
P. Nozières ◽  
K. Vladár ◽  
G. T. Zimányi

2017 ◽  
Vol 32 (15) ◽  
pp. 1740001 ◽  
Author(s):  
Maxim Yu. Khlopov

In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.


2015 ◽  
Vol 51 (71) ◽  
pp. 13611-13614 ◽  
Author(s):  
Ananya Dutta ◽  
Jialiu Ma ◽  
Antek G. Wong-Foy ◽  
Adam J. Matzger

A coordination terpolymerization strategy is exploited to generate a non-interpenetrated pillared-layer coordination polymer with a non-regular layer arrangement. The role of breaking nodal symmetry is discussed.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 188
Author(s):  
Andrey A. Grib ◽  
Yuri V. Pavlov

The number of superheavy particles with the mass of the Grand Unification scale with trans-Planckian energy created at the epoch of superheavy particle creation from the vacuum by the gravitation of the expanding Universe is calculated. In later collisions of these particles, gravitational radiation is radiated playing the role of bremsstrahlung for gravity. The effective background radiation of the Universe is evaluated.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043027
Author(s):  
Jens Boos

Cosmic strings, as remnants of the symmetry breaking phase in the Early universe, may be susceptible to nonlocal physics. Here, we show that the presence of a Poincaré-invariant nonlocality—parametrized by a factor [Formula: see text]—regularizes the gravitational field and thereby changes the properties of spacetime: it is now simply connected and the angle deficit around the cosmic string becomes a function of the radial distance. Similar changes occur for the nonlocal gravitomagnetic field of a rotating cosmic string, and we translate these mathematical facts into the language of nonlocal gravitoelectromagnetism and thereby provide a physical interpretation. We hope that these insights might provide a helpful perspective in the search for traces of nonlocal physics in our universe.


Sign in / Sign up

Export Citation Format

Share Document