scholarly journals Algebraic solution and coherent states for the Dirac oscillator interacting with a topological defect

2019 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Salazar-Ramírez ◽  
D. Ojeda-Guillén ◽  
A. Morales-González ◽  
V. H. García-Ortega
2011 ◽  
Vol 84 (3) ◽  
Author(s):  
J. Carvalho ◽  
C. Furtado ◽  
F. Moraes

2020 ◽  
Vol 35 (21) ◽  
pp. 2050179
Author(s):  
Hao Chen ◽  
Zheng-Wen Long ◽  
Yi Yang ◽  
Chao-Yun Long

In this paper, we use the functional Bethe ansatz method to solve the radial problem of the Dirac oscillator in cosmic string space-time, and its general solution under the Killingbeck potential plus isotonic oscillator potential in the limit of the spin and the pseudo-spin symmetries are further presented. Corresponding to the expressions of energies and wave function of bound state and first excited state are given. Furthermore, some particular cases including the Cornell potential, the Kratzer potential, the Killingbeck potential and the isotonic oscillator potentials are also addressed. It shows that the energy levels of the systems depend explicitly on the potential parameters [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and the angular deficit parameter [Formula: see text] which characterize topological defect.


Author(s):  
Abdullah Guvendi ◽  
Hassan Hassanabadi

In this paper, we investigate the relativistic dynamics of a fermion–antifermion pair holding through Dirac oscillator interaction in the rotating frame of [Formula: see text]-dimensional topological defect-generated geometric background. We obtain an exact energy spectrum for the system in question by solving the corresponding form of a fully covariant two-body Dirac equation. This energy spectrum depends on the angular velocity [Formula: see text] of uniformly rotating frame and angular deficit [Formula: see text] in the geometric background. Our results show that the effects of [Formula: see text] on each energy level of the system are not same and the [Formula: see text] impacts on the strength of interaction between the particles. Furthermore, we observe that it seems to be possible to actively tune the dynamics of such a fermion–antifermion system, in principle.


2019 ◽  
Vol 19 (2) ◽  
pp. 379-390
Author(s):  
Z Heibati ◽  
A Mahdifar ◽  
E Amooghorban ◽  
◽  
◽  
...  
Keyword(s):  

1977 ◽  
Vol 8 (4) ◽  
pp. 249-256 ◽  
Author(s):  
Mohammad Akram Gill

In the differential equation of the overland turbulent flow which was first postulated by Horton, Eq.(6), the value of c equals 5/3. For this value of c, the flow equation could not be integrated algebraically. Horton solved the equation for c = 2 and believed that his solution was valid for mixed flow. The flow equation with c = 5/3 is solved algebraically herein. It is shown elsewhere (Gill 1976) that the flow equation can indeed be integrated for any rational value of c.


2015 ◽  
Vol 22 (04) ◽  
pp. 1550021 ◽  
Author(s):  
Fabio Benatti ◽  
Laure Gouba

When dealing with the classical limit of two quantum mechanical oscillators on a noncommutative configuration space, the limits corresponding to the removal of configuration-space noncommutativity and position-momentum noncommutativity do not commute. We address this behaviour from the point of view of the phase-space localisation properties of the Wigner functions of coherent states under the two limits.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 250
Author(s):  
Frédéric Barbaresco ◽  
Jean-Pierre Gazeau

For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document