noninertial effects
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Abdullah Guvendi ◽  
Hassan Hassanabadi

In this paper, we investigate the relativistic dynamics of a fermion–antifermion pair holding through Dirac oscillator interaction in the rotating frame of [Formula: see text]-dimensional topological defect-generated geometric background. We obtain an exact energy spectrum for the system in question by solving the corresponding form of a fully covariant two-body Dirac equation. This energy spectrum depends on the angular velocity [Formula: see text] of uniformly rotating frame and angular deficit [Formula: see text] in the geometric background. Our results show that the effects of [Formula: see text] on each energy level of the system are not same and the [Formula: see text] impacts on the strength of interaction between the particles. Furthermore, we observe that it seems to be possible to actively tune the dynamics of such a fermion–antifermion system, in principle.


Author(s):  
Vinicius M. G. Silveira ◽  
Cesar A. Z. Vasconcellos ◽  
Emerson G. S. Luna ◽  
Dimiter Hadjimichef
Keyword(s):  

Author(s):  
Ricardo L. L. Vitória

Abstract We investigate rotating effects on a charged scalar field immersed in spacetime with a magnetic screw dislocation. In addition to the hard-wall potential, which we impose to satisfy a boundary condition from the rotating effect, we insert a Coulomb-type potential and the Klein–Gordon oscillator into this system, where, analytically, we obtain solutions of bound states which are influenced not only by the spacetime topology, but also by the rotating effects, as a Sagnac-type effect modified by the presence of the magnetic screw dislocation.


2019 ◽  
Vol 16 (04) ◽  
pp. 1950054 ◽  
Author(s):  
M. Hosseini ◽  
H. Hassanabadi ◽  
S. Hassanabadi ◽  
P. Sedaghatnia

In this paper, we find solutions for the Klein–Gordon equation in the presence of a Cornell potential under the influence of noninertial effects in the cosmic string space-time. Then, we study Klein–Gordon oscillator in the cosmic string space-time. In addition, we show that the presence of a Cornell potential causes the forming bound states for the Klein–Gordon equation in this kind of background.


2018 ◽  
Vol 33 (20) ◽  
pp. 1850122 ◽  
Author(s):  
L. C. N. Santos ◽  
C. C. Barros

In this paper we study the quantization of a massless scalar field in a rotating frame. In particular, we obtain the Casimir energy in a space–time with one extra compactified dimension for a rotating observer. We consider a uniformly rotating system on the circle S1 and present an equation for spin-0 bosons where noninertial effects can be taken into account. It is shown that the spectrum of the scalar field depends on the angular velocity of the rotating system and in this way, positive and negative modes can be defined through an appropriate choice of the angular velocity. We show that noninertial effects restrict the physical region of the space–time where particles can be placed, and furthermore that the Casimir energy in the space–time with one extra compactified dimension is shifted by these effects. In addition, we pointed out that rotating effects modify the length of the extra dimension for a co-rotating observer in this kind of space–time.


Sign in / Sign up

Export Citation Format

Share Document