scholarly journals Bounds on warm dark matter from Schwarzschild primordial black holes

2021 ◽  
Vol 136 (2) ◽  
Author(s):  
Jérémy Auffinger ◽  
Isabella Masina ◽  
Giorgio Orlando

AbstractWe consider light dark matter candidates originated from the evaporation of Schwarzschild primordial black holes, with masses in the range $$10^{-5}$$ 10 - 5 –$$10^9$$ 10 9 g. These candidates are beyond standard model particles with negligible couplings to the other particles, so that they interact only gravitationally. Belonging to the category of warm dark matter, they nevertheless spoil structure formation, with a softer impact for increasing values of the candidate spin. Requiring such candidates to fully account for the observed dark matter, we find that the scenario of black hole domination is ruled out for all spin values up to 2. For the scenario of radiation domination, we derive upper limits on the parameter $$\beta $$ β (the primordial black hole energy density at formation over the radiation one), which are less stringent the higher the candidate spin is.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
A. V. Grobov ◽  
S. G. Rubin ◽  
V. Yu. Shalamova

A mechanism of primordial black hole formation with specific mass spectrum is discussed. It is shown that these black holes could contribute to the energy density of dark matter. Our approach is elaborated in the framework of universal extra dimensions.


2013 ◽  
Vol 22 (05) ◽  
pp. 1350022 ◽  
Author(s):  
D. DWIVEDEE ◽  
B. NAYAK ◽  
L. P. SINGH

We investigate the evolution of primordial black hole mass spectrum by including both accretion of radiation and Hawking evaporation within Brans–Dicke (BD) cosmology in radiation-, matter- and vacuum-dominated eras. We also consider the effect of evaporation of primordial black holes on the expansion dynamics of the universe. The analytic solutions describing the energy density of the black holes in equilibrium with radiation are presented. We demonstrate that these solutions act as attractors for the system ensuring stability for both linear and nonlinear situations. We show, however, that inclusion of accretion of radiation delays the onset of this equilibrium in all radiation-, matter- and vacuum-dominated eras.


2021 ◽  
Vol 2021 (11) ◽  
pp. 039
Author(s):  
Valerio De Luca ◽  
Gabriele Franciolini ◽  
Paolo Pani ◽  
Antonio Riotto

Abstract The next generation of gravitational-wave experiments, such as Einstein Telescope, Cosmic Explorer and LISA, will test the primordial black hole scenario. We provide a forecast for the minimum testable value of the abundance of primordial black holes as a function of their masses for both the unclustered and clustered spatial distributions at formation. In particular, we show that these instruments may test abundances, relative to the dark matter, as low as 10-10.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Sai Wang ◽  
Zhi-Chao Zhao

AbstractTwo gravitational wave events, i.e. GW200105 and GW200115, were observed by the Advanced LIGO and Virgo detectors recently. In this work, we show that they can be explained by a scenario of primordial black hole binaries that are formed in the early Universe. The merger rate predicted by such a scenario could be consistent with the one estimated from LIGO and Virgo, even if primordial black holes constitute a fraction of cold dark matter. The required abundance of primordial black holes is compatible with the existing upper limits from microlensing, caustic crossing and cosmic microwave background observations.


Author(s):  
Hyungjin Kim

Abstract Primordial black holes are a viable dark matter candidate. They decay via Hawking evaporation. Energetic particles from the Hawking radiation interact with interstellar gas, depositing their energy as heat and ionization. For a sufficiently high Hawking temperature, fast electrons produced by black holes deposit a substantial fraction of energy as heat through the Coulomb interaction. Using the dwarf galaxy Leo T, we place an upper bound on the fraction of primordial black hole dark matter. For M < 5 × 10−17M⊙, our bound is competitive with or stronger than other bounds.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 372-378
Author(s):  
Viktor D. Stasenko ◽  
Alexander A. Kirillov

In this paper, the merger rate of black holes in a cluster of primordial black holes (PBHs) is investigated. The clusters have characteristics close to those of typical globular star clusters. A cluster that has a wide mass spectrum ranging from 10−2 to 10M⊙ (Solar mass) and contains a massive central black hole of the mass M•=103M⊙ is considered. It is shown that in the process of the evolution of cluster, the merger rate changed significantly, and by now, the PBH clusters have passed the stage of active merging of the black holes inside them.


2021 ◽  
Author(s):  
Rui feng Zheng ◽  
Jia ming Shi ◽  
Taotao Qiu

Abstract It is well known that primordial black hole (PBH) can be generated in inflation process of the early universe, especially when the inflaton field has some non-trivial features that could break the slow-roll condition. In this paper, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We found that potential with multi-bump can give rise to power spectra with multi peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical collapse and elliptical collapse. And discusses the scalar-induced gravitational waves (SIGWs) generated by the second-order scalar perturbations.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Gert Hütsi ◽  
Tomi Koivisto ◽  
Martti Raidal ◽  
Ville Vaskonen ◽  
Hardi Veermäe

AbstractWe show that the physical conditions which induce the Thakurta metric, recently studied by Bœhm et al. in the context of time-dependent black hole masses, correspond to a single accreting compact object in the entire Universe filled with isotropic non-interacting dust. In such a case, accretion physics is not local but tied to the properties of the whole Universe. We show that radiation, primordial black holes or particle dark matter cannot produce the specific energy flux required for supporting the mass growth of the compact objects described by the Thakurta metric. In particular, this solution does not apply to black hole binaries. We conclude that compact dark matter candidates and their mass growth cannot be described by the Thakurta metric, and thus existing constraints on the primordial black hole abundance from the LIGO-Virgo and the CMB measurements remain valid.


2015 ◽  
Vol 24 (13) ◽  
pp. 1545005 ◽  
Author(s):  
K. M. Belotsky ◽  
A. A. Kirillov ◽  
S. G. Rubin

Here, we briefly discuss the possibility to solve simultaneously with primordial black holes (PBHs) the problems of dark matter (DM), reionization of the universe, origin of positron line from Galactic center and supermassive black hole (BH) in it. Discussed scenario can naturally lead to a multiple-peak broad-mass-range distribution of PBHs in mass, which is necessary for simultaneous solution of the problems.


2007 ◽  
Vol 16 (07) ◽  
pp. 1243-1248 ◽  
Author(s):  
I. B. KHRIPLOVICH ◽  
N. PRODUIT

If primordial black holes (PBH) saturate the present upper limit on the dark matter density in our Solar system and if their radiation spectrum is discrete, the sensitivity of modern detectors is close to that necessary for detecting this radiation. This conclusion is not in conflict with the upper limits on the PBH evaporation rate.


Sign in / Sign up

Export Citation Format

Share Document