scholarly journals Cosmological evolution in f(T, B) gravity

2021 ◽  
Vol 136 (10) ◽  
Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon
2012 ◽  
Vol 8 (S290) ◽  
pp. 259-260 ◽  
Author(s):  
Yan-Rong Li ◽  
Jian-Min Wang ◽  
Luis C. Ho

AbstractWe derive the mass function of supermassive black holes (SMBHs) over the redshift range 0 > z ≲ 2, using the latest deep luminosity and mass functions of field galaxies. Applying this mass function, combined with the bolometric luminosity function of active galactic nuclei (AGNs), into the the continuity equation of SMBH number density, we explicitly obtain the mass-dependent cosmological evolution of the radiative efficiency for accretion. We suggest that the accretion history of SMBHs and their spins evolve in two distinct regimes: an early phase of prolonged accretion, plausibly driven by major mergers, during which the black hole spins up, then switching to a period of random, episodic accretion, governed by minor mergers and internal secular processes, during which the hole spins down. The transition epoch depends on mass, mirroring other evidence for “cosmic downsizing” in the AGN population.


2018 ◽  
Vol 14 (S342) ◽  
pp. 29-36
Author(s):  
M. Guainazzi ◽  
M. S. Tashiro

AbstractX-ray spectroscopy is key to address the theme of “The Hot Universe”, the still poorly understood astrophysical processes driving the cosmological evolution of the baryonic hot gas traceable through its electromagnetic radiation. Two future X-ray observatories: the JAXA-led XRISM (due to launch in the early 2020s), and the ESA Cosmic Vision L-class mission Athena (early 2030s) will provide breakthroughs in our understanding of how and when large-scale hot gas structures formed in the Universe, and in tracking their evolution from the formation epoch to the present day.


2012 ◽  
Vol 27 (04) ◽  
pp. 1250014 ◽  
Author(s):  
PAVAN K. ALURI ◽  
PANKAJ JAIN

We show that perturbations generated during the anisotropic pre-inflationary stage of cosmic evolution may affect cosmological observations today for a certain range of parameters. Due to the anisotropic nature of the universe during such early times, it might explain some of the observed signals of large scale anisotropy. In particular, we argue that the alignment of CMB quadrupole and octopole may be explained by the Sachs–Wolfe effect due to the large scale anisotropic modes from very early times of cosmological evolution. We also comment on how the observed dipole modulation of CMB power may be explained within this framework.


1996 ◽  
Vol 111 (12) ◽  
pp. 1481-1486
Author(s):  
A. Beesham

2011 ◽  
Vol 334 (1) ◽  
pp. 183-186 ◽  
Author(s):  
Nairwita Mazumder ◽  
Ritabrata Biswas ◽  
Subenoy Chakraborty

Author(s):  
Yu.G. Ignat’ev ◽  
◽  
A.R. Samigullina ◽  

A study and computer simulation of a complete model of the cosmological evolution of a classical scalar field with a Higgs potential is carried out without the assumption that the Hubble constant is nonnegative. It is shown that in most cases of initial conditions the cosmological model passes from the expansion stage to the compression stage. Thus, cosmological models based on the classical Higgs field are unstable with respect to finite perturbations.


Sign in / Sign up

Export Citation Format

Share Document