Leading order corrections to the cosmological evolution of tensor perturbations in braneworld

2004 ◽  
Vol 2004 (10) ◽  
pp. 015-015 ◽  
Author(s):  
Tsutomu Kobayashi ◽  
Takahiro Tanaka
2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Guang-Hua Ding ◽  
Jin Qiao ◽  
Qiang Wu ◽  
Tao Zhu ◽  
Anzhong Wang

AbstractThe effective field theory (EFT) of inflation provides an essential picture to explore the effects of the unknown high energy physics in the single scalar field inflation models. For a generic EFT of inflation, possible high energy corrections to simple slow-roll inflation can modify both the propagating speed and dispersion relations of the cosmological scalar and tensor perturbations. With the arrival of the era of precision cosmology, it is expected that these high energy corrections become more important and have to be taken into account in the analysis with future precise observational data. In this paper we study the observational predictions of the EFT of inflation by using the third-order uniform asymptotic approximation method. We calculate explicitly the primordial power spectra, spectral indices, running of the spectral indices for both scalar and tensor perturbations, and the ratio between tensor and scalar spectra. These expressions are all written in terms of the Hubble flow parameters and the flow of four new slow-roll parameters and expanded up to the next-to-leading order in the slow-roll expansions so they represent the most accurate results obtained so far in the literature. The flow of the four new slow-roll parameters, which arise from the four new operators introduced in the action of the EFT of inflation, can affect the primordial perturbation spectra at the leading-order and the corresponding spectral indices at the next-to-leading order.


Author(s):  
David J. Steigmann

This chapter develops two-dimensional membrane theory as a leading order small-thickness approximation to the three-dimensional theory for thin sheets. Applications to axisymmetric equilibria are developed in detail, and applied to describe the phenomenon of bulge propagation in cylinders.


Author(s):  
Michele Maggiore

A comprehensive and detailed account of the physics of gravitational waves and their role in astrophysics and cosmology. The part on astrophysical sources of gravitational waves includes chapters on GWs from supernovae, neutron stars (neutron star normal modes, CFS instability, r-modes), black-hole perturbation theory (Regge-Wheeler and Zerilli equations, Teukoslky equation for rotating BHs, quasi-normal modes) coalescing compact binaries (effective one-body formalism, numerical relativity), discovery of gravitational waves at the advanced LIGO interferometers (discoveries of GW150914, GW151226, tests of general relativity, astrophysical implications), supermassive black holes (supermassive black-hole binaries, EMRI, relevance for LISA and pulsar timing arrays). The part on gravitational waves and cosmology include discussions of FRW cosmology, cosmological perturbation theory (helicity decomposition, scalar and tensor perturbations, Bardeen variables, power spectra, transfer functions for scalar and tensor modes), the effects of GWs on the Cosmic Microwave Background (ISW effect, CMB polarization, E and B modes), inflation (amplification of vacuum fluctuations, quantum fields in curved space, generation of scalar and tensor perturbations, Mukhanov-Sasaki equation,reheating, preheating), stochastic backgrounds of cosmological origin (phase transitions, cosmic strings, alternatives to inflation, bounds on primordial GWs) and search of stochastic backgrounds with Pulsar Timing Arrays (PTA).


Author(s):  
Fábio Köpp Nóbrega ◽  
Luiz Fernando Mackedanz

Resumo Neste artigo, vamos estudar alguns conceitos fundamentais em física de partículas através do estudo detalhado de um processo específico da Eletrodinâmica Quântica (QED): o espalhamento Bhabha em ordem dominante (Leading Order - LO). Este ocorre na interação entre um elétron e sua antipartícula, o pósitron, sendo um dos processos básicos da QED. Nossa escolha em trabalhar este processo deve-se a riqueza de detalhes proporcionada pelas duas possibilidades (canais) de interação, que servem para ilustrar o cálculo da interferência entre as possibilidades. Além disso, esse processo é utilizado para determinar a luminosidade de um determinado colisor, o que garante maior precisão nas medidas de outras grandezas relevantes para a análise das interações entre partículas. Finalmente, comparamos a predição da QED com os resultados do experimento DESY-PETRA-TASSO.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Paul Frederik Depta ◽  
Andreas Halsch ◽  
Janine Hütig ◽  
Sebastian Mendizabal ◽  
Owe Philipsen

Abstract Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest “vanilla leptogenesis” scenario is by $$ \mathcal{O} $$ O (1) increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Fabian Müller ◽  
Akaki Rusetsky

Abstract Using non-relativistic effective field theory, we derive a three-particle analog of the Lellouch-Lüscher formula at the leading order. This formula relates the three-particle decay amplitudes in a finite volume with their infinite-volume counterparts and, hence, can be used to study the three-particle decays on the lattice. The generalization of the approach to higher orders is briefly discussed.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
M. Boglione ◽  
A. Simonelli

Abstract Factorizing the cross section for single hadron production in e+e− annihilations is a highly non trivial task when the transverse momentum of the outgoing hadron with respect to the thrust axis is taken into account. We work in a scheme that allows to factorize the e+e−→ H X cross section as a convolution of a calculable hard coefficient and a Transverse Momentum Dependent (TMD) fragmentation function. The result, differential in zh, PT and thrust, will be given to all orders in perturbation theory and explicitly computed to Next to Leading Order (NLO) and Next to Leading Log (NLL) accuracy. The predictions obtained from our computation, applying the simplest and most natural ansatz to model the non-perturbative part of the TMD, are in exceptional agreement with the experimental measurements of the BELLE Collaboration. The factorization scheme we propose relates the TMD parton densities defined in 1-hadron and 2-hadron processes, restoring the possi- bility to perform global phenomenological studies of TMD physics including experimental data from semi-inclusive deep inelastic scattering, Drell-Yan processes, e+e−→ H1H2X and e+e−→ H X annihilations.


Sign in / Sign up

Export Citation Format

Share Document