Heat and mass transfer analysis on non-Newtonian fluid motion driven by peristaltic pumping in an asymmetric curved channel

Author(s):  
A. Magesh ◽  
M. Kothandapani
2020 ◽  
Vol 17 ◽  
pp. 50-63
Author(s):  
N. T. M. Eldabe ◽  
Ahmed Refaie Ali ◽  
Gamil Ali Shalaby

A theoretical study has been developed to investigate the influence of thermophoresis and couple stresses on the steady flow of non-Newtonian fluid with free convective heat and mass transfer over a channel bounded by two permeable plates. The considered non-Newtonian fluid follows a viscoelastic model. The problem is modulated mathematically by a system of non-linear differential equations pertaining to describe the continuity, momentum, energy, and concentration. These equations involve the effects of viscous dissipation and chemical reaction. The numerical solutions of the dimensionless equations are found as a function of the physical parameters of this problem. The numerical formulas of the velocity (u), temperature Φ and concentration Θ as well as skin friction coefficient T*, Nusselt number(Nu) and Sherwood number(Sh) are computed. The physical parameter's effects of the problem on these formulas are described and illustrated graphically through some figures and tables. It is observed that any increase in the thermophoretic parameter T leads to reduce in velocity profiles as well as concentration layers. In contrast, the velocity increases with increasing the couple stresses inverse parameter.


2017 ◽  
Vol 377 ◽  
pp. 111-126 ◽  
Author(s):  
C. Sulochana ◽  
G.P Ashwinkumar ◽  
Naramgari Sandeep

In this study, we investigated the 2D MHD flow of a dissipative Maxwell nanofluid past an elongated sheet with uneven heat source/sink, Brownian moment and thermophoresis effects. The flow governing PDEs are transmuted into nonlinear ODEs adopting the suitable similarity transmissions. Further, the RK-4 technique is employed to acquire the numerical solutions. The impact of pertinent parameters such as thermal radiation, frictional heating, irregular heat source/sink, biot number, Brownian moment and thermophoresis on the flow quantities such as velocity, thermal and concentration fields likewise friction factor, heat and mass transfer rates are bestowed with the succour of graphs and tables. Dual nature is witnessed for Newtonian and non-Newtonian fluid cases. It is noticed that the heat and mass transfer rate in Newtonian fluid larger as compared with non-Newtonian fluid.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Nabil T. M. Eldabe ◽  
Bothaina M. Agoor ◽  
Heba Alame

This paper is devoted to the study of the peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in the channel under the effect of magnetic field. A modified Casson non-Newtonian constitutive model is employed for the transport fluid. A perturbation series’ method of solution of the stream function is discussed. The effects of various parameters of interest such as the magnetic parameter, Casson parameter, and permeability parameter on the velocity, pressure rise, temperature, and concentration are discussed and illustrated graphically through a set of figures.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
R. R. Kairi ◽  
P. V. S. N. Murthy

In this paper, we investigate the influence of melting on mixed convection heat and mass transfer from vertical flat plate in a non-Newtonian fluid-saturated non-Darcy porous medium including the prominent Soret effect. The wall and the ambient medium are maintained at constant but different levels of temperature and concentration such that the heat and mass transfer occurs from the wall to the medium. The Ostwald–de Waele power law model is used to characterize the non-Newtonian fluid behavior. A similarity solution for the transformed governing equations is obtained. The numerical computation is carried out for various values of the nondimensional physical parameters. The variation of temperature, concentration, and heat and mass transfer coefficients with the power law index, mixed convection parameter, inertia parameter, melting parameter, Soret number, buoyancy ratio, and Lewis number is discussed for a wide range of values of these parameters.


2018 ◽  
Vol 7 (1) ◽  
pp. 65-72
Author(s):  
Rishi Raj Kairi ◽  
Ch. RamReddy ◽  
Santanu Raut

Abstract This paper emphasizes the thermo-diffusion and viscous dissipation effects on double diffusive natural convection heat and mass transfer characteristics of non-Newtonian power-law fluid over a vertical cone embedded in a non-Darcy porous medium with variable heat and mass flux conditions. The Ostwald–de Waele power-law model is employed to describe the behavior of non-Newtonian fluid. Local non-similarity procedure is applied to transform the set of non-dimensional partial differential equations into set of ordinary differential equations and then the resulting system of equations are solved numerically by Runge-Kutta fourth order method together with a shooting technique. The influence of pertinent parameters on temperature and concentration, heat and mass transfer rates are analyzed in opposing and aiding buoyancy cases through graphical representation and explored in detail.


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1067-1081
Author(s):  
Nabil El-Dabe ◽  
Galal Moatimid ◽  
Mona Mohamed ◽  
Yasmeen Mohamed

In the current paper, the peristaltic transport of a non-Newtonian fluid obeying a Casson model with heat and mass transfer inside a vertical circular cylinder is studied. The considered system is affected by a strong horizontal uniform magnetic field together with the heat radiation and the Hall current. The problem is modulated mathematically by a system of PDE that describe the basic behavior of the fluid motion. The boundary value problem is analytically solved with the appropriate boundary conditions in accordance with the special case, in the absence of the Eckert number. The solutions are obtained in terms of the modified Bessel function of the first kind. Again, in the general case, the system is solved by means of the homotopy perturbation and then numerically through the Runge-Kutta Merson with a shooting technique. A comparison is done between these two methods. Therefore, the velocity, temperature and concentration distributions are obtained. A set of diagrams are plotted to illustrate the influence of the various physical parameters in the forgoing distributions. Finally, the trapping phenomenon is also discussed.


Sign in / Sign up

Export Citation Format

Share Document