scholarly journals Influence of Couple Stresses and Thermophoresis on Free Convective Heat and Mass Transfer of Viscoelastic Fluid.

2020 ◽  
Vol 17 ◽  
pp. 50-63
Author(s):  
N. T. M. Eldabe ◽  
Ahmed Refaie Ali ◽  
Gamil Ali Shalaby

A theoretical study has been developed to investigate the influence of thermophoresis and couple stresses on the steady flow of non-Newtonian fluid with free convective heat and mass transfer over a channel bounded by two permeable plates. The considered non-Newtonian fluid follows a viscoelastic model. The problem is modulated mathematically by a system of non-linear differential equations pertaining to describe the continuity, momentum, energy, and concentration. These equations involve the effects of viscous dissipation and chemical reaction. The numerical solutions of the dimensionless equations are found as a function of the physical parameters of this problem. The numerical formulas of the velocity (u), temperature Φ and concentration Θ as well as skin friction coefficient T*, Nusselt number(Nu) and Sherwood number(Sh) are computed. The physical parameter's effects of the problem on these formulas are described and illustrated graphically through some figures and tables. It is observed that any increase in the thermophoretic parameter T leads to reduce in velocity profiles as well as concentration layers. In contrast, the velocity increases with increasing the couple stresses inverse parameter.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ime Jimmy Uwanta ◽  
Halima Usman

The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.


Author(s):  
J. Buggaramulu ◽  
M. Venkatakrishna ◽  
Y. Harikrishna

The objective of this paper is to analyze an unsteady MHD free convective heat and mass transfer boundary flow past a semi-infinite vertical porous plate immersed in a porous medium with radiation and chemical reaction. The governing equations of the flow field are solved numerical a two term perturbation method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-frication coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.


2019 ◽  
Vol 24 (1) ◽  
pp. 53-66
Author(s):  
O.J. Fenuga ◽  
S.J. Aroloye ◽  
A.O. Popoola

Abstract This paper investigates a chemically reactive Magnetohydrodynamics fluid flow with heat and mass transfer over a permeable surface taking into consideration the buoyancy force, injection/suction, heat source/sink and thermal radiation. The governing momentum, energy and concentration balance equations are transformed into a set of ordinary differential equations by method of similarity transformation and solved numerically by Runge- Kutta method based on Shooting technique. The influence of various pertinent parameters on the velocity, temperature, concentration fields are discussed graphically. Comparison of this work with previously published works on special cases of the problem was carried out and the results are in excellent agreement. Results also show that the thermo physical parameters in the momentum boundary layer equations increase the skin friction coefficient but decrease the momentum boundary layer. Fluid suction/injection and Prandtl number increase the rate of heat transfer. The order of chemical reaction is quite significant and there is a faster rate of mass transfer when the reaction rate and Schmidt number are increased.


2017 ◽  
Vol 377 ◽  
pp. 111-126 ◽  
Author(s):  
C. Sulochana ◽  
G.P Ashwinkumar ◽  
Naramgari Sandeep

In this study, we investigated the 2D MHD flow of a dissipative Maxwell nanofluid past an elongated sheet with uneven heat source/sink, Brownian moment and thermophoresis effects. The flow governing PDEs are transmuted into nonlinear ODEs adopting the suitable similarity transmissions. Further, the RK-4 technique is employed to acquire the numerical solutions. The impact of pertinent parameters such as thermal radiation, frictional heating, irregular heat source/sink, biot number, Brownian moment and thermophoresis on the flow quantities such as velocity, thermal and concentration fields likewise friction factor, heat and mass transfer rates are bestowed with the succour of graphs and tables. Dual nature is witnessed for Newtonian and non-Newtonian fluid cases. It is noticed that the heat and mass transfer rate in Newtonian fluid larger as compared with non-Newtonian fluid.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
R. R. Kairi ◽  
P. V. S. N. Murthy

In this paper, we investigate the influence of melting on mixed convection heat and mass transfer from vertical flat plate in a non-Newtonian fluid-saturated non-Darcy porous medium including the prominent Soret effect. The wall and the ambient medium are maintained at constant but different levels of temperature and concentration such that the heat and mass transfer occurs from the wall to the medium. The Ostwald–de Waele power law model is used to characterize the non-Newtonian fluid behavior. A similarity solution for the transformed governing equations is obtained. The numerical computation is carried out for various values of the nondimensional physical parameters. The variation of temperature, concentration, and heat and mass transfer coefficients with the power law index, mixed convection parameter, inertia parameter, melting parameter, Soret number, buoyancy ratio, and Lewis number is discussed for a wide range of values of these parameters.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2449-2458 ◽  
Author(s):  
Nabil Eldabe ◽  
Mohamed Abou-Zeid

The present analysis discusses the effects of thermal-diffusion with thermal radiation, Joule heating and internal heat generation on peristaltic flow of a non-Newtonian fluid obeying Jeffery model. Heat and mass transfer are also taken into consideration, the flow is between two co-axial tubes under the effect of radially varying magnetic field. The inner tube is uniform and at rest, while the outer tube is flexible with sinusoidal wave traveling. The problem is modulated mathematically by a system of partial differential equations which describes the equations of momentum, heat, and mass transfer. These equations are solved analytically under the assumptions of long wave length and low-Reynolds number in non-dimensional form. The solutions are obtained as a functions of physical parameters of the problem. The radially varying magnetic field effect on the temperature and concentration distributions is analyzed and it is shown that the increase of Hartman number tends to reduce the temperature, while it increases the concentration.


2009 ◽  
Vol 36 (1) ◽  
pp. 29-46 ◽  
Author(s):  
I. Muhaimin ◽  
Ramasamy Kandasamy ◽  
I. Hashim

An analysis is presented to investigate the effect of thermophoresis particle deposition and variable viscosity on Darcy mixed convective heat and mass transfer of a viscous, incompressible fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection. The viscosity of the fluid is assumed to be a inverse linear function of temperature. The results are analyzed for the effect of different physical parameters, such as variable viscosity, magnetic, chemical reaction and thermophoresis parameters, on the flow, the heat and mass transfer characteristics.


Author(s):  
Mahmoud E. Ouaf ◽  
Mohamed Y. Abou-zeid

The purpose of this paper is to investogate the ectromagnetic and micropolar properties on biviscosity fluid flow with heat and mass transfer through a non-Darcy porous medium. Morever, The heat source, viscous dissipation, thermal diffusion and chemical reaction are taken into consideration. The system of non linear equations which govern the motion is transformed into ordinary differential equations by using a suitable similarity transformations. These equations are solved by making use of Rung–Kutta–Merson method in a shooting and matching technique. The numerical solutions of the velocity, microtation velocity, temperature and concentration are obtained as a functions of the physical parameters of the problem. Moreover the effects of these parameters on these solutions are discussed numerically and depicted graphically. It is found that the microtation velocity increases or deceases as the electric parameter, Hartman parameter and the microrotation parameter increase. Morever, the temperature increases as Forschheimer number, Eckert number increase.


Sign in / Sign up

Export Citation Format

Share Document