scholarly journals Effects of hall currents with heat and mass transfer on the peristaltic transport of a Casson fluid through a porous medium in a vertical circular cylinder

2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1067-1081
Author(s):  
Nabil El-Dabe ◽  
Galal Moatimid ◽  
Mona Mohamed ◽  
Yasmeen Mohamed

In the current paper, the peristaltic transport of a non-Newtonian fluid obeying a Casson model with heat and mass transfer inside a vertical circular cylinder is studied. The considered system is affected by a strong horizontal uniform magnetic field together with the heat radiation and the Hall current. The problem is modulated mathematically by a system of PDE that describe the basic behavior of the fluid motion. The boundary value problem is analytically solved with the appropriate boundary conditions in accordance with the special case, in the absence of the Eckert number. The solutions are obtained in terms of the modified Bessel function of the first kind. Again, in the general case, the system is solved by means of the homotopy perturbation and then numerically through the Runge-Kutta Merson with a shooting technique. A comparison is done between these two methods. Therefore, the velocity, temperature and concentration distributions are obtained. A set of diagrams are plotted to illustrate the influence of the various physical parameters in the forgoing distributions. Finally, the trapping phenomenon is also discussed.

2019 ◽  
Vol 8 (1) ◽  
pp. 470-485 ◽  
Author(s):  
V. Ramachandra Prasad ◽  
S. Abdul gaffar ◽  
B. Rushi Kumar

Abstract This article aims to study theoretically the combined magneto hydrodynamic flows of casson viscoplastic nanofluid from a horizontal isothermal circular cylinder in non-Darcy porous medium. The impacts of Brownian motion and thermophoresis are consolidated and studied. The governing partial differential equations are converted into nonlinear ordinary differential equations using suitable non-similarity transformation and are solved numerically using Keller-Box finite difference technique. The numerical method is validated with previous published work and the results are found to be in excellent agreement. Numerical results for velocity, temperature, concentration along with skin friction coefficient, heat and mass transfer rate are discussed for various values of physical parameters. It is observed that velocity, heat and mass transfer rate are increased with increasing casson fluid parameter whereas temperature, concentration and skin friction are decreased. Velocity is reduced with increasing Forchheimer parameter whereas temperature and nano-particle concentration are both enhanced. An increase in magnetic parameter is seen to increase temperature and concentration whereas velocity, skin friction heat and mass transfer rate are decreased. The present model finds applications in electric-conductive nano-materials of potential use in aviation and different enterprises, energy systems and thermal enhancement of industrial flow processes.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 373
Author(s):  
Shahanaz Parvin ◽  
Siti Suzilliana Putri Mohamed Isa ◽  
Norihan Md Arifin ◽  
Fadzilah Md Ali

The development of the mathematical modeling of Casson fluid flow and heat and mass transfer is presented in this paper. The model is subjected to the following physical parameters: shrinking parameter, mixed convection, concentration buoyancy ratio parameter, Soret number, and Dufour number. This model is also subjected to the inclined magnetic field and shrinking sheet at a certain angle projected from the y- and x-axes, respectively. The MATLAB bvp4c program is the main mathematical program that was used to obtain the final numerical solutions for the reduced ordinary differential equations (ODEs). These ODEs originate from the governing partial differential equations (PDEs), where the transformation can be achieved by applying similarity transformations. The MATLAB bvp4c program was also implemented to develop stability analysis, where this calculation was executed to recognize the most stable numerical solution. Numerical graphics were made for the skin friction coefficient, local Nusselt number, local Sherwood number, velocity profile, temperature profile, and concentration profile for certain values of the physical parameters. It is found that all the governed parameters affected the variations of the Casson fluid flow, heat transfer, mass transfer, and the profiles of velocity, temperature, and concentration. In addition, a stable solution can be applied to predict the impact of physical parameters on the actual fluid model by using a mathematical fluid model.


2018 ◽  
Vol 28 ◽  
pp. 33-46 ◽  
Author(s):  
K. Avinash ◽  
R. Hemadri Reddy ◽  
Anselm Onyekachukwu Oyem

A study on the thermophoresis and Brownian moment effects on magnetohydrodynamic flow of dissipative Casson fluid over a stretching sheet is considered. The governing equations of the flow, heat and mass transfer is transformed to ordinary differential equations by using similarity transformation. Numerical solutions of these equations are obtained by using shooting technique. The influence of pertinent parameters on the velocity, temperature and concentration profiles along with friction factor, local Nusselt and Sherwood numbers are discussed and presented through graphs and tables. It is found that the heat and mass transfer rate is high in steady flow when compared to unsteady flow.


Author(s):  
J. Buggaramulu ◽  
M. Venkatakrishna ◽  
Y. Harikrishna

The objective of this paper is to analyze an unsteady MHD free convective heat and mass transfer boundary flow past a semi-infinite vertical porous plate immersed in a porous medium with radiation and chemical reaction. The governing equations of the flow field are solved numerical a two term perturbation method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-frication coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ime Jimmy Uwanta ◽  
Halima Usman

The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.


2019 ◽  
Vol 24 (1) ◽  
pp. 53-66
Author(s):  
O.J. Fenuga ◽  
S.J. Aroloye ◽  
A.O. Popoola

Abstract This paper investigates a chemically reactive Magnetohydrodynamics fluid flow with heat and mass transfer over a permeable surface taking into consideration the buoyancy force, injection/suction, heat source/sink and thermal radiation. The governing momentum, energy and concentration balance equations are transformed into a set of ordinary differential equations by method of similarity transformation and solved numerically by Runge- Kutta method based on Shooting technique. The influence of various pertinent parameters on the velocity, temperature, concentration fields are discussed graphically. Comparison of this work with previously published works on special cases of the problem was carried out and the results are in excellent agreement. Results also show that the thermo physical parameters in the momentum boundary layer equations increase the skin friction coefficient but decrease the momentum boundary layer. Fluid suction/injection and Prandtl number increase the rate of heat transfer. The order of chemical reaction is quite significant and there is a faster rate of mass transfer when the reaction rate and Schmidt number are increased.


Sign in / Sign up

Export Citation Format

Share Document