Fractional-order biological system: chaos, multistability and coexisting attractors

Author(s):  
Nadjette Debbouche ◽  
Adel Ouannas ◽  
Shaher Momani ◽  
Donato Cafagna ◽  
Viet-Thanh Pham
2021 ◽  
Vol 143 ◽  
pp. 110575
Author(s):  
Nadjette Debbouche ◽  
A. Othman Almatroud ◽  
Adel Ouannas ◽  
Iqbal M. Batiha

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bo Yan ◽  
Shaobo He ◽  
Shaojie Wang

In this paper, a 4D fractional-order centrifugal flywheel governor system is proposed. Dynamics including the multistability of the system with the variation of system parameters and the derivative order are investigated by Lyapunov exponents (LEs), bifurcation diagram, phase portrait, entropy measure, and basins of attraction, numerically. It shows that the minimum order for chaos of the fractional-order centrifugal flywheel governor system is q = 0.97, and the system has rich dynamics and produces multiple coexisting attractors. Moreover, the system is controlled by introducing the adaptive controller which is proved by the Lyapunov stability theory. Numerical analysis results verify the effectiveness of the proposed method.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950174 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
Fawaz E. Alsaadi ◽  
Fahimeh Nazarimehr ◽  
...  

In this paper, a new four-dimensional chaotic flow is proposed. The system has a cyclic symmetry in its structure and shows a complicated, chaotic attractor. The dynamical properties of the system are investigated. The system shows multistability in an interval of its parameter. Fractional order model of the proposed system is discussed in various fractional orders. Bifurcation analysis of the fractional order system shows that it has a kind of multistability like the integer order system, which is a very rare phenomenon. Circuit realization of the proposed system is also carried out to show that it is usable for engineering applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Duy Vo Hoang ◽  
Sifeu Takougang Kingni ◽  
Viet-Thanh Pham

No-equilibrium system with chaotic behavior has attracted considerable attention recently because of its hidden attractor. We study a new four-dimensional system without equilibrium in this work. The new no-equilibrium system exhibits hyperchaos and coexisting attractors. Amplitude control feature of the system is also discovered. The commensurate fractional-order version of the proposed system is studied using numerical simulations. By tuning the commensurate fractional-order, the proposed system displays a wide variety of dynamical behaviors ranging from coexistence of quasiperiodic and chaotic attractors and bistable chaotic attractors to point attractor via transient chaos.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Guangchao Zheng ◽  
Ling Liu ◽  
Chongxin Liu

In this paper, a novel three-dimensional fractional-order chaotic system without equilibrium, which can present symmetric hidden coexisting chaotic attractors, is proposed. Dynamical characteristics of the fractional-order system are analyzed fully through numerical simulations, mainly including finite-time local Lyapunov exponents, bifurcation diagram, and the basins of attraction. In particular, the system can generate diverse coexisting attractors varying with different orders, which presents ample and complex dynamic characteristics. And there is great potential for secure communication. Then electronic circuit of the fractional-order system is designed to help verify its effectiveness. What is more, taking the disturbances into account, a finite-time synchronization of the fractional-order chaotic system without equilibrium is achieved and the improved controller is proven strictly by applying finite-time stable theorem. Eventually, simulation results verify the validity and rapidness of the proposed method. Therefore, the fractional-order chaotic system with hidden attractors can present better performance for practical applications, such as secure communication and image encryption, which deserve further investigation.


2019 ◽  
Vol 29 (01) ◽  
pp. 1950004 ◽  
Author(s):  
Chengyi Zhou ◽  
Zhijun Li ◽  
Yicheng Zeng ◽  
Sen Zhang

A novel three-dimensional fractional-order autonomous chaotic system marked by the ample and complex coexisting attractors is presented. There are a total of seven terms including four nonlinearities in the new system. The evolution of coexisting attractors of the system are numerically investigated by considering both the fractional-order and other system parameters as bifurcation parameters. Numerical simulation results indicate that the system has a huge amount of multifarious coexisting strange attractors for various ranges of parameters, including coexisting point, periodic attractors, multifarious coexisting chaotic, and periodic attractors. Compared with other chaotic systems, the biggest difference and most attractive feature is the capability of the proposed fractional-order system to produce coexisting attractors that undergo a simultaneous displacement phenomenon with variation of a single parameter. Moreover, it is worth noting that constant Lyapunov exponents and the interesting phenomenon of transient coexisting attractors are also observed. Finally, the corresponding implementation circuit is designed. The consistency of the hardware experimental results with numerical simulations verifies the feasibility of the new fractional-order chaotic system.


Author(s):  
Ahlem Gasri ◽  
Adel Ouannas ◽  
Amina-Aicha Khennaoui ◽  
Samir Bendoukha ◽  
Viet-Thanh Pham

AbstractThis paper studies the dynamics of two fractional-order chaotic maps based on two standard chaotic maps with sine terms. The dynamic behavior of this map is analyzed using numerical tools such as phase plots, bifurcation diagrams, Lyapunov exponents and 0–1 test. With the change of fractional-order, it is shown that the proposed fractional maps exhibit a range of different dynamical behaviors including coexisting attractors. The existence of coexistence attractors is depicted by plotting bifurcation diagram for two symmetrical initial conditions. In addition, three control schemes are introduced. The first two controllers stabilize the states of the proposed maps and ensure their convergence to zero asymptotically whereas the last synchronizes a pair of non-identical fractional maps. Numerical results are used to verify the findings.


Sign in / Sign up

Export Citation Format

Share Document