Double Hopf bifurcation and stability of Koren–Feingold cloud–rain system with rain production delay

Author(s):  
Xiao Liu ◽  
Lijun Pei ◽  
Wanyong Wang ◽  
Shishuo Qi
1999 ◽  
Vol 121 (1) ◽  
pp. 105-109 ◽  
Author(s):  
M. Moh’d ◽  
K. Huseyin

This paper extends the bifurcation and stability analysis of the autonomous system considered in Part 1 to the case of a corresponding nonautonomous system. The effect of an external harmonic excitation on the Hopf bifurcation is studied via a modified Intrinsic Harmonic Balancing technique. It is observed that a shift in the critical value of the parameter occurs due to the external excitation. The analysis is carried out with the aid of MAPLE which is also instrumental in verifying the consistency of the approximations conveniently.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130022
Author(s):  
Miaorong Zhang ◽  
Xiaofang Zhang ◽  
Qinsheng Bi

This paper focuses on the influence of two scales in the frequency domain on the behaviors of a typical dynamical system with a double Hopf bifurcation. By introducing an external periodic excitation to the normal form of the vector field with double Hopf bifurcation at the origin and taking the exciting frequency far less than the natural frequency, a theoretical model with two scales in the frequency domain is established. Regarding the whole exciting term as a slow-varying parameter leads to a generalized autonomous system, in which the equilibrium branches and their bifurcations with the variation of the slow-varying parameter can be derived. With the increase of the exciting amplitude, different types of bifurcations may be involved in the generalized autonomous system, resulting in several qualitatively different forms of bursting attractors, the mechanism of which is presented by overlapping the transformed phase portraits and the bifurcations of the equilibrium branches. It is found that the single mode 2D torus may evolve to the bursting attractors with mixed modes, in which the trajectory alternates between the single mode oscillations and the mixed mode oscillations. Furthermore, the transitions between the quiescent states and the spiking states may not occur exactly at the bifurcation points because of the slow passage effect, while Hopf bifurcations may cause different forms of repetitive spiking oscillations.


2018 ◽  
Vol 28 (11) ◽  
pp. 1850136 ◽  
Author(s):  
Ben Niu ◽  
Yuxiao Guo ◽  
Yanfei Du

Tumor-immune interaction plays an important role in the tumor treatment. We analyze the stability of steady states in a diffusive tumor-immune model with response and proliferation delay [Formula: see text] of immune system where the immune cell has a probability [Formula: see text] in killing tumor cells. We find increasing time delay [Formula: see text] destabilizes the positive steady state and induces Hopf bifurcations. The criticality of Hopf bifurcation is investigated by deriving normal forms on the center manifold, then the direction of bifurcation and stability of bifurcating periodic solutions are determined. Using a group of parameters to simulate the system, stable periodic solutions are found near the Hopf bifurcation. The effect of killing probability [Formula: see text] on Hopf bifurcation values is also discussed.


2003 ◽  
Vol 2003 (31) ◽  
pp. 1981-1991 ◽  
Author(s):  
Malay Bandyopadhyay ◽  
Rakhi Bhattacharya ◽  
C. G. Chakrabarti

The present paper dealing with the nonlinear bifurcation analysis of two-species oscillatory system consists of three parts. The first part deals with Hopf-bifurcation and limit cycle analysis of the homogeneous system. The second consists of travelling wave train solution and its linear stability analysis of the system in presence of diffusion. The last deals with an oscillatory chemical system as an illustrative example.


2009 ◽  
Vol 19 (11) ◽  
pp. 3733-3751 ◽  
Author(s):  
SUQI MA ◽  
ZHAOSHENG FENG ◽  
QISHAI LU

In this paper, we are concerned with the Rose–Hindmarsh model with time delay. By applying the generalized Sturm criterion, a number of imaginary roots of the characteristic equation are classified. The absolutely stable regions for any value of time delay are detected. By the continuous software DDE-Biftool, both the Hopf bifurcation curves and double Hopf bifurcation points are illustrated in parametric spaces. The normal form and universal unfolding at double Hopf bifurcation points are considered by the center manifold method. Some examples also indicate that the corresponding unique attractor near each double Hopf point is asymptotically stable.


Sign in / Sign up

Export Citation Format

Share Document