scholarly journals Three perspectives on complexity: entropy, compression, subsymmetry

2017 ◽  
Vol 226 (15) ◽  
pp. 3251-3272 ◽  
Author(s):  
Nithin Nagaraj ◽  
Karthi Balasubramanian
Keyword(s):  
2015 ◽  
Vol 32 (3) ◽  
pp. 1137-1153 ◽  
Author(s):  
Jakub Przybyło ◽  
Jens Schreyer ◽  
Erika Škrabul’áková

10.37236/3038 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Pascal Ochem ◽  
Alexandre Pinlou

In combinatorics on words, a word $w$ over an alphabet $\Sigma$ is said to avoid a pattern $p$ over an alphabet $\Delta$ if there is no factor $f$ of $w$ such that $f= h(p)$ where $h: \Delta^*\to\Sigma^*$ is a non-erasing morphism. A pattern $p$ is said to be $k$-avoidable if there exists an infinite word over a $k$-letter alphabet that avoids $p$. We give a positive answer to Problem 3.3.2 in Lothaire's book "Algebraic combinatorics on words'", that is, every pattern with $k$ variables of length at least $2^k$ (resp. $3\times2^{k-1}$) is 3-avoidable (resp. 2-avoidable). This conjecture was first stated by Cassaigne in his thesis in 1994. This improves previous bounds due to Bell and Goh, and Rampersad.


10.37236/6210 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Michał Dębski ◽  
Urszula Pastwa ◽  
Krzysztof Węsek

Motivated by a geometrical Thue-type problem, we introduce a new variant of the classical pattern avoidance in words, where jumping over a letter in the pattern occurrence is allowed. We say that pattern $p\in E^+$ occurs with jumps in a word $w=a_1a_2\ldots a_k \in A^+$, if there exist a non-erasing morphism $f$ from $E^*$ to $A^*$ and a sequence $(i_1, i_2, \ldots , i_l)$ satisfying $i_{j+1}\in\{ i_j+1, i_j+2 \}$ for $j=1, 2, \ldots, l-1$, such that $f(p) = a_{i_1}a_{i_2}\ldots a_{i_l}.$ For example, a pattern $xx$ occurs with jumps in a word $abdcadbc$ (for $x \mapsto abc$). A pattern $p$ is grasshopper $k$-avoidable if there exists an alphabet $A$ of $k$ elements, such that there exist arbitrarily long words over $A$ in which $p$ does not occur with jumps. The minimal such $k$ is the grasshopper avoidability index of $p$. It appears that this notion is related to two other problems: pattern avoidance on graphs and pattern-free colorings of the Euclidean plane. In particular, we show that a sequence avoiding a pattern $p$ with jumps can be a tool to construct a line $p$-free coloring of $\mathbb{R}^2$.    In our work, we determine the grasshopper avoidability index of patterns $\alpha^n$ for all $n$ except $n=5$. We also show that every doubled pattern is grasshopper $(2^7+1)$-avoidable, every pattern on $k$ variables of length at least $2^k$ is grasshopper $37$-avoidable, and there exists a constant $c$ such that every pattern of length at least $c$ on $2$ variables is grasshopper $3$-avoidable (those results are proved using the entropy compression method).


2018 ◽  
Vol 35 (3) ◽  
pp. 906-920 ◽  
Author(s):  
Laihao Ding ◽  
Guanghui Wang ◽  
Jianliang Wu

Author(s):  
Winfield Chen ◽  
Lloyd T. Elliott

We improve the efficiency of population genetic file formats and GWAS computation by leveraging the distribution of samples in population-level genetic data. We identify conditional exchangeability of these data, recommending finite state entropy algorithms as an arithmetic code naturally suited for compression of population genetic data. We show between [Formula: see text] and [Formula: see text] speed and size improvements over modern dictionary compression methods that are often used for population genetic data such as Zstd and Zlib in computation and decompression tasks. We provide open source prototype software for multi-phenotype GWAS with finite state entropy compression demonstrating significant space saving and speed comparable to the state-of-the-art.


2016 ◽  
Vol 10 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Bartłomiej Bosek ◽  
Sebastian Czerwiński ◽  
Jarosław Grytczuk ◽  
Paweł Rzążewski

A harmonious coloring of a k-uniform hypergraph H is a vertex coloring such that no two vertices in the same edge share the same color, and each k-element subset of colors appears on at most one edge. The harmonious number h(H) is the least number of colors needed for such a coloring. We prove that k-uniform hypergraphs of bounded maximum degree ? satisfy h(H) = O(k?k!m), where m is the number of edges in H which is best possible up to a multiplicative constant. Moreover, for every fixed ?, this constant tends to 1 with k ? ?. We use a novel method, called entropy compression, that emerged from the algorithmic version of the Lov?sz Local Lemma due to Moser and Tardos.


Sign in / Sign up

Export Citation Format

Share Document