Nonlinear fractional-order boundary value problems with boundary conditions involving fractional derivative operators

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 130
Author(s):  
Suphawat Asawasamrit ◽  
Yasintorn Thadang ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In the present article we study existence and uniqueness results for a new class of boundary value problems consisting by non-instantaneous impulses and Caputo fractional derivative of a function with respect to another function, supplemented with Riemann–Stieltjes fractional integral boundary conditions. The existence of a unique solution is obtained via Banach’s contraction mapping principle, while an existence result is established by using Leray–Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Hussein A. H. Salem ◽  
Mieczysław Cichoń

The object of this paper is to investigate the existence of a class of solutions for some boundary value problems of fractional order with integral boundary conditions. The considered problems are very interesting and important from an application point of view. They include two, three, multipoint, and nonlocal boundary value problems as special cases. We stress on single and multivalued problems for which the nonlinear term is assumed only to be Pettis integrable and depends on the fractional derivative of an unknown function. Some investigations on fractional Pettis integrability for functions and multifunctions are also presented. An example illustrating the main result is given.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hyunju Kim ◽  
Junseo Lee ◽  
Bongsoo Jang

AbstractThis article proposes new strategies for solving two-point Fractional order Nonlinear Boundary Value Problems (FNBVPs) with Robin Boundary Conditions (RBCs). In the new numerical schemes, a two-point FNBVP is transformed into a system of Fractional order Initial Value Problems (FIVPs) with unknown Initial Conditions (ICs). To approximate ICs in the system of FIVPs, we develop nonlinear shooting methods based on Newton’s method and Halley’s method using the RBC at the right end point. To deal with FIVPs in a system, we mainly employ High-order Predictor–Corrector Methods (HPCMs) with linear interpolation and quadratic interpolation (Nguyen and Jang in Fract. Calc. Appl. Anal. 20(2):447–476, 2017) into Volterra integral equations which are equivalent to FIVPs. The advantage of the proposed schemes with HPCMs is that even though they are designed for solving two-point FNBVPs, they can handle both linear and nonlinear two-point Fractional order Boundary Value Problems (FBVPs) with RBCs and have uniform convergence rates of HPCMs, $\mathcal{O}(h^{2})$ O ( h 2 ) and $\mathcal{O}(h^{3})$ O ( h 3 ) for shooting techniques with Newton’s method and Halley’s method, respectively. A variety of numerical examples are demonstrated to confirm the effectiveness and performance of the proposed schemes. Also we compare the accuracy and performance of our schemes with another method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Fang Wang ◽  
Lishan Liu ◽  
Yonghong Wu ◽  
Yumei Zou

This article is concerned with a class of singular nonlinear fractional boundary value problems with p-Laplacian operator, which contains Riemann–Liouville fractional derivative and Caputo fractional derivative. The boundary conditions are made up of two kinds of Riemann–Stieltjes integral boundary conditions and nonlocal infinite-point boundary conditions, and different fractional orders are involved in the boundary conditions and the nonlinear term, respectively. Based on the method of reducing the order of fractional derivative, some properties of the corresponding Green’s function, and the fixed point theorem of mixed monotone operator, an interesting result on the iterative sequence of the uniqueness of positive solutions is obtained under the assumption that the nonlinear term may be singular in regard to both the time variable and space variables. And we obtain the dependence of solution upon parameter. Furthermore, two numerical examples are presented to illustrate the application of our main results.


Author(s):  
Sekson Sirisubtawee ◽  
Supaporn Kaewta

We apply new modified recursion schemes obtained by the Adomian decomposition method (ADM) to analytically solve specific types of two-point boundary value problems for nonlinear fractional order ordinary and partial differential equations. The new modified recursion schemes, which sometimes utilize the technique of Duan’s convergence parameter, are derived using the Duan-Rach modified ADM. The Duan-Rach modified ADM employs all of the given boundary conditions to compute the remaining unknown constants of integration, which are then embedded in the integral solution form before constructing recursion schemes for the solution components. New modified recursion schemes obtained by the method are generated in order to analytically solve nonlinear fractional order boundary value problems with a variety of two-point boundary conditions such as Robin and separated boundary conditions. Some numerical examples of such problems are demonstrated graphically. In addition, the maximal errors (MEn) or the error remainder functions (ERn(x)) of each problem are calculated.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yaohong Li ◽  
Yongqing Wang ◽  
Donal O’Regan ◽  
Jiafa Xu

In this paper, we present some theorems on impulsive periodic boundary value problems with fractional derivative dependence. In particular, we discuss the existence of solutions of a class of fractional-order impulsive periodic boundary values with nonlinear terms and impulsive terms satisfying certain growth conditions. Three examples are provided to illustrate our results.


2021 ◽  
pp. 108128652199641
Author(s):  
Mikhail D Kovalenko ◽  
Irina V Menshova ◽  
Alexander P Kerzhaev ◽  
Guangming Yu

We construct exact solutions of two inhomogeneous boundary value problems in the theory of elasticity for a half-strip with free long sides in the form of series in Papkovich–Fadle eigenfunctions: (a) the half-strip end is free and (b) the half-strip end is firmly clamped. Initially, we construct a solution of the inhomogeneous problem for an infinite strip. Subsequently, the corresponding solutions for a half-strip are added to this solution, whereby the boundary conditions at the end are satisfied. The Papkovich orthogonality relation is used to solve the inhomogeneous problem in a strip.


Sign in / Sign up

Export Citation Format

Share Document