A METHOD FOR DETERMINING OPTIMUM LOCATIONS AND NUMBER OF STIFFENING COUPLING BEAMS IN COUPLED SHEAR WALL STRUCTURE

2005 ◽  
Author(s):  
QINGSHAN LIU ◽  
XINGWEN LIANG ◽  
MINGKE DENG
2016 ◽  
Vol 113 (1) ◽  
Author(s):  
by Steven M. Barbachyn ◽  
Yahya C. Kurama ◽  
Michael J. McGinnis ◽  
Richard Sause

2017 ◽  
Vol 21 (9) ◽  
pp. 1327-1348
Author(s):  
Cong Chen ◽  
Renjie Xiao ◽  
Xilin Lu ◽  
Yun Chen

Structure with replaceable devices is a type of earthquake resilient structure developed to restore the structure immediately after strong earthquakes. Current researches focus on one type of the replaceable device located in the structural part that is most likely to be damaged; however, plastic deformation would not be limited in a specific part but expand to other parts. To concentrate possible damage in shear wall structures, combined form of replaceable devices was introduced in this article. Based on previous studies, combined form of replaceable coupling beam and replaceable wall foot was used in a coupled shear wall. Influences of the dimension and location of the replaceable devices to the strength and stiffness of the shear wall were investigated through numerical modeling, which was verified by experimental data. Performance comparison between the shear walls with one type and combined form of replaceable devices and the conventional coupled shear wall was performed. In general, the shear wall with combined form of replaceable devices is shown to be better energy dissipated, and proper dimensions and locations of the replaceable devices should be determined.


Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


Author(s):  
Michael J. McGinnis ◽  
Steven Barbachyn ◽  
Michelle R. Holloman ◽  
Yahya C. Kurama

2019 ◽  
Vol 11 (3) ◽  
pp. 867
Author(s):  
Yun Chen ◽  
Junzuo Li ◽  
Zheng Lu

The coupled shear wall with replaceable coupling beams is a current research hotspot, while still lacking comprehensive studies that combine both experimental and numerical approaches to describe the global performance of the structural system. In this paper, hybrid coupled shear walls (HSWs) with replaceable coupling beams (RCBs) are studied. The middle part of the coupling beam is replaced with a replaceable “fuse”. Four ½-scale coupled shear wall specimens including a conventional reinforced concrete shear wall (CSW) and three HSWs (F1SW/F2SW/F3SW) with different kinds of replaceable “fuses” (Fuse 1/Fuse 2/Fuse 3) are tested through cyclic loading. Fuse 1 is an I-shape steel with a rhombic opening at the web; Fuse 2 is a double-web I-shape steel with lead filled in the gap between the two webs; Fuse 3 consists of two parallel steel tubes filled by lead. The comparison of seismic properties of the four shear walls in terms of failure mechanism, hysteretic response, strength degradation, stiffness degradation, energy consumption, and strain response is presented. The nonlinear finite element analysis of four shear walls is conducted by ABAQUS software. The deformation process, yielding sequence of components, skeleton curves, and damage distribution of the walls are simulated and agree well with the experimental results. The primary benefit of HSWs is that the damage of the coupling beam is concentrated at the replaceable “fuse”, while other parts remain intact. Besides, because the “fuse” can dissipate much energy, the damage of the wall-piers is also alleviated. In addition, among the three HSWs, F1SW possesses the best ductility and load retention capacity while F2SW possesses the best energy dissipation capacity. Based on this comprehensive study, some suggestions for the conceptual design of HSWs are further proposed.


2013 ◽  
Vol 788 ◽  
pp. 538-541
Author(s):  
Peng Zhang ◽  
Fu Ma

Coupling beam, the first line resisting earthquake, is directly related to the overall performance of the shear wall structure. Using the large general finite element analysis software ANSYS, the coupling beam span-depth ratio is 2~3 different reinforcement scheme in finite element analysis. Analysis on the ductility performance of reinforced concrete coupling beams in shear wall structure in three fields: the concrete strength grade, the longitudinal reinforcement ratio and the stirrup ratio, provides a basis for the design of the structure and to provide a reference for similar studies.


2013 ◽  
Vol 721 ◽  
pp. 714-719
Author(s):  
Cheng Bei ◽  
Shi Wei Li ◽  
Ray K.L. Su

Coupling beams are essential structural elements of reinforced concrete coupled shear wall to resist earthquakes and other lateral loads. But many current reinforced concrete coupling beams are insufficient in resisting lateral loads due to their bad ductility. So a test of retrofitting methods of deep coupling beams with steel plates since their good performance in the ductility and deformation was made to find ways of improving the ductility of the beams, and the results of this retrofitting method prove good because of the incensement of the ductility, deformation and strength of the beams.


Sign in / Sign up

Export Citation Format

Share Document