CHARACTERIZING THE EFFECT OF TEMPERATURE AND MAGNETIC FIELD STRENGTHS ON THE COMPLEX SHEAR MODULUS PROPERTIES OF MAGNETORHEOLOGICAL (MR) FLUIDS

Author(s):  
W. W. CHOOI ◽  
S. O. OYADIJI
2005 ◽  
Vol 19 (07n09) ◽  
pp. 1318-1324 ◽  
Author(s):  
W. W. CHOOI ◽  
S. O. OYADIJI

When a magnetic field is applied across MR fluids, a yield stress is developed, and their rheological properties can then be categorized into two distinct regimes; pre-yield and post-yield. This paper concerns the viscoelastic behaviour of MR fluids in the pre-yield region. Oscillatory tests were carried out to determine the complex shear modulus properties of MR fluids between the temperature range of -20°C and +50°C. The test results show that the storage modulus and loss modulus increased in value as the excitation frequency was increased from 5Hz to 50Hz. The complex modulus was also found to be influenced by changes in temperature; the higher the temperature, the lower the complex modulus. This is consistent with the behaviour of viscoelastic polymers. The sets of temperature-dependent and frequency-dependent data were subsequently condensed using the method of reduced variables into master curves of complex modulus which effectively extended the frequency coverage of the data at the reference temperature.


2015 ◽  
Vol 759 ◽  
pp. 15-25
Author(s):  
Mateusz Romaszko ◽  
Jacek Snamina ◽  
Sebastian Pakuła

The paper presents the procedure of identification of a complex shear modulus which describes properties of MR fluid in the pre-yield regime as a function of magnetic field. Data necessary for identification were collected basing on measurements of free vibrations of a three-layered cantilever beam at a special laboratory stand. Magnetic field exerting on MR fluid placed in the beam was generated by electromagnet. In the next step, complex modes of beam vibrations for various places of applying the magnetic field and its strength were calculated.


Author(s):  
Mehdi Eshaghi ◽  
Ramin Sedaghati ◽  
Subash Rakheja

This study aims to present a field dependent phenomenological model to characterize the Magneto-Rheological (MR) fluid in the pre-yield region under varying frequency and applied magnetic field. Systematic analytical and experimental studies are proposed to formulate a hybrid model for representing complex shear modulus of a typical MR fluid (MR 122EG from Lord Corporation) as a function of both applied magnetic field and frequency. Two fully treated MR based sandwich beams with aluminum and copper face layers and MR fluid as the core layer are designed and fabricated. Uniform magnetic flux across the sandwich beam is provided using two permanent magnets. The fabricated MR based sandwich beams are then tested on an electrodynamic shaker under sweep sine excitation and different applied magnetic field to realize the effect of external excitation frequency and applied magnetic field on the stiffness and damping properties of the structure. The finite element model based on classical plate theory is also developed to analyze vibration response of the designed MR based sandwich beams incorporated with MR fluid. Then, by correlating the finite element results with those of the experiment, the frequency and field dependent complex shear modulus of the MR fluid is identified.


1995 ◽  
Vol 34 (6) ◽  
pp. 606-621 ◽  
Author(s):  
Jos Zeegers ◽  
Dirk van den Ende ◽  
Cor Blom ◽  
Egbert G. Altena ◽  
Gerrit J. Beukema ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document