Current Methods to Assess Fire Danger Potential

Author(s):  
J. San-Miguel-Ayanz ◽  
J. D. Carlson ◽  
Martin Alexander ◽  
Kevin Tolhurst ◽  
Gary Morgan ◽  
...  
Keyword(s):  
2013 ◽  
Vol 22 (6) ◽  
pp. 797 ◽  
Author(s):  
Christian Schunk ◽  
Clemens Leutner ◽  
Michael Leuchner ◽  
Clemens Wastl ◽  
Annette Menzel

Fine fuel moisture content is a key parameter in fire danger and behaviour applications. For modelling purposes, equilibrium moisture content (EMC) curves are an important input parameter. This paper provides EMC data for central European fuels and adds methodological considerations that can be used to improve existing test procedures. Litter samples of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) were subjected to three different experiments using conditioning in a climate chamber and above saturated salt solutions. Climate chamber conditioning yielded the best results and can generally be recommended, however saturated salt solutions are able to produce lower relative humidities, which are relevant to forest fire applications as they represent the highest fire danger. Results were within the range of published sorption isotherms for forest fine fuels. A fairly clear gradation was present with higher EMC values in leaf litters than in needle litters. These differences are in accord with values from the literature and suggest general differences in the sorption properties of leaves and needles, which may be caused by differing chemical and physical properties. The influence of temperature on EMC described in the literature could be confirmed.


2021 ◽  
Author(s):  
Carolina Gallo Granizo ◽  
Jonathan Eden ◽  
Bastien Dieppois ◽  
Matthew Blackett

<p>Weather and climate play an important role in shaping global fire regimes and geographical distributions of burnable areas. At the global scale, fire danger is likely to increase in the near future due to warmer temperatures and changes in precipitation patterns, as projected by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). There is a need to develop the most reliable projections of future climate-driven fire danger to enable decision makers and forest managers to take both targeted proactive actions and to respond to future fire events.</p><p>Climate change projections generated by Earth System Models (ESMs) provide the most important basis for understanding past, present and future changes in the climate system and its impacts. ESMs are, however, subject to systematic errors and biases, which are not fully taken into account when developing risk scenarios for wild fire activity. Projections of climate-driven fire danger have often been limited to the use of single models or the mean of multi-model ensembles, and compared to a single set of observational data (e.g. one index derived from one reanalysis).</p><p>Here, a comprehensive global evaluation of the representation of a series of fire weather indicators in the latest generation of ESMs is presented. Seven fire weather indices from the Canadian Forest Fire Weather Index System were generated using daily fields realisations simulated by 25 ESMs from the 6<sup>th</sup> Coupled Model Intercomparison Project (CMIP6). With reference to observational and reanalysis datasets, we quantify the capacity of each model to realistically simulate the variability, magnitude and spatial extent of fire danger. The highest-performing models are identified and, subsequently, the limitations of combining models based on independency and equal performance when generating fire danger projections are discussed. To conclude, recommendations are given for the development of user- and policy-driven model evaluation at spatial scales relevant for decision-making and forest management.</p>


2013 ◽  
Vol 13 (9) ◽  
pp. 2157-2167 ◽  
Author(s):  
C. Schunk ◽  
C. Wastl ◽  
M. Leuchner ◽  
C. Schuster ◽  
A. Menzel

Abstract. Forest fire danger rating based on sparse meteorological stations is known to be potentially misleading when assigned to larger areas of complex topography. This case study examines several fire danger indices based on data from two meteorological stations at different elevations during a major drought period. This drought was caused by a persistent high pressure system, inducing a pronounced temperature inversion and its associated thermal belt with much warmer, dryer conditions in intermediate elevations. Thus, a massive drying of fuels, leading to higher fire danger levels, and multiple fire occurrences at mid-slope positions were contrasted by moderate fire danger especially in the valleys. The ability of fire danger indices to resolve this situation was studied based on a comparison with the actual fire danger as determined from expert observations, fire occurrences and fuel moisture measurements. The results revealed that, during temperature inversion, differences in daily cycles of meteorological parameters influence fire danger and that these are not resolved by standard meteorological stations and fire danger indices (calculated on a once-a-day basis). Additional stations in higher locations or high-resolution meteorological models combined with fire danger indices accepting at least hourly input data may allow reasonable fire danger calculations under these circumstances.


2014 ◽  
Vol 14 (6) ◽  
pp. 1477-1490 ◽  
Author(s):  
A. Venäläinen ◽  
N. Korhonen ◽  
O. Hyvärinen ◽  
N. Koutsias ◽  
F. Xystrakis ◽  
...  

Abstract. Understanding how fire weather danger indices changed in the past and how such changes affected forest fire activity is important in a changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis data sets, ERA-40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960–2012. Additionally, we used national forest fire statistics from Greece, Spain and Finland to examine the relationship between fire danger and fires. There is no obvious trend in fire danger for the time period covered by ERA-40 (1960–1999), whereas for the period 1980–2012 covered by ERA Interim, the mean FWI shows an increasing trend for southern and eastern Europe which is significant at the 99% confidence level. The cross correlations calculated at the national level in Greece, Spain and Finland between total area burned and mean FWI of the current season is of the order of 0.6, demonstrating the extent to which the current fire-season weather can explain forest fires. To summarize, fire risk is multifaceted, and while climate is a major determinant, other factors can contribute to it, either positively or negatively.


Proceedings ◽  
2018 ◽  
Vol 2 (7) ◽  
pp. 348
Author(s):  
Evgenii Ponomarev ◽  
Eugene Shvetsov ◽  
Kirill Litvintsev ◽  
Irina Bezkorovaynaya ◽  
Tatiana Ponomareva ◽  
...  

This study was carried out for Siberia using Terra/Modis satellite data (2002–2016), data of ground surveys on burned areas of different ages, long-term meteorological information, and numerical simulation results. On the basis of meteorological and wildfire databases, we evaluated the probability (~18%) of an extreme fire danger scenario that was found to occur every 8 ± 3 years in different parts of the region. Next, we used Fire Radiative Power (FRP) measurements to classify the varieties of burning conditions for each wildfire in the database. The classification of the annually burned forest area was obtained in accordance with the assessments of burning intensity ranges categorized by FRP. Depending on the fire danger scenario in Siberia, 47.04 ± 13.6% of the total wildfire areas were classified as low-intensity burning, 42.46 ± 10.50% as medium-intensity fire areas, and 10.50 ± 6.90% as high-intensity. Next, we calculated the amount of combusted biomass and the direct emissions for each wildfire, taking into account the variable intensity of burning within the fire polygons. The total annual emissions were also calculated for Siberia for the last 15 years, from 2002 to 2016. The average estimate of direct carbon emission was 83 ± 21 Tg/year, which is lower than the result (112 ± 25 Tg/year) we obtained using the standard procedure.


Sign in / Sign up

Export Citation Format

Share Document