JWKB Connection for Radial Wave Functions and Bound-State/Free-State Duality

Author(s):  
J. S. Bell ◽  
J. Pasupathy
2016 ◽  
Vol 25 (01) ◽  
pp. 1650002 ◽  
Author(s):  
V. H. Badalov

In this work, the analytical solutions of the [Formula: see text]-dimensional radial Schrödinger equation are studied in great detail for the Wood–Saxon potential by taking advantage of the Pekeris approximation. Within a novel improved scheme to surmount centrifugal term, the energy eigenvalues and corresponding radial wave functions are found for any angular momentum case within the context of the Nikiforov–Uvarov (NU) and Supersymmetric quantum mechanics (SUSYQM) methods. In this way, based on these methods, the same expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformed each other is demonstrated. In addition, a finite number energy spectrum depending on the depth of the potential [Formula: see text], the radial [Formula: see text] and orbital [Formula: see text] quantum numbers and parameters [Formula: see text] are defined as well.


2002 ◽  
Vol 705 (3-4) ◽  
pp. 335-351 ◽  
Author(s):  
R. Yarmukhamedov ◽  
D. Baye ◽  
C. Leclercq-Willain

2009 ◽  
Vol 18 (07) ◽  
pp. 1561-1585 ◽  
Author(s):  
R. YARMUKHAMEDOV ◽  
M. K. UBAYDULLAEVA

Asymptotic expressions for the bound state radial partial wave functions of three-body (nnc) halo nuclei with two loosely bound valence neutrons (n) are obtained in explicit form, when the relative distance between two neutrons (r) tends to infinity and the relative distance between the center of mass of core (c) and two neutrons (ρ) is too small or vice versa. These asymptotic expressions contain a factor that can strongly influence the asymptotic values of the three-body radial wave function in the vicinity of the hyperangle of φ~0 except 0 (r→∞ and ρ is too small except 0) or φ~π/2 except π/2 (ρ→∞ and r is too small except 0) in the configuration space. The derived asymptotic forms are applied to the analysis of the asymptotic behavior of the three-body (nnα) wave function for 6He nucleus obtained by other authors on the basis of multicluster stochastic variational method using the two forms of the αN-potential. The ranges of r (or ρ) from the asymptotical regions are determined for which the agreement between the calculated wave function and the asymptotics formulae is reached. Information about the values of the three-body asymptotic normalization factors is extracted.


2020 ◽  
Vol 3 (2) ◽  
pp. 240-251
Author(s):  
ES Eyube ◽  
U Wadata ◽  
SD Najoji

We have employed the exact quantization rule to obtain closed form expression for the bound state energy eigenvalues of a molecule in quadratic exponential-type potential. To deal with the spin-orbit centrifugal term of the effective potential energy function, we have used a Pekeris-type approximation scheme, we have also obtained closed form expression for the normalized radial wave functions by solving the Riccati equation with quadratic exponential-type potential. Using our derived energy eigenvalue formula, we have deduced expressions for the bound state energy eigenvalues of the Hulthén, Eckart and Deng-Fan potentials, considered as special cases of the quadratic exponential-type potential. Our deduced energy eigenvalues are in excellent agreement with those in the literature. We have computed bound states energy eigenvalues for six diatomic molecules viz: HCl, LiH, H2, SeH, VH and TiH. Our results are in total agreement with existing results in the literature for the s-wave and in good agreement for higher quantum states. By solving the Riccati equation, we have obtained normalized radial wave functions of the quadratic exponential-type potential, our results show higher probabilities of finding the molecule in the region 0.1 ≤ y ≤ 0.2


1967 ◽  
Vol 20 (5) ◽  
pp. 489 ◽  
Author(s):  
I Robertson

The semiclassical model of direct reactions is reviewed and its predictions are presented for a reaction that exhibits the phenomenon of backward peaking, following the work of Pearson. The curve a(1800) against energy is fitted quite closely and the shape of the curve has a simple explanation in terms of the bound state radial wave functions.


2020 ◽  
Vol 4 (2) ◽  
pp. 425-435
Author(s):  
Dlama Yabwa ◽  
Eyube E.S ◽  
Yusuf Ibrahim

In this work we have applied ansatz method to solve for the approximate ℓ-state solution of time independent Schrödinger wave equation with modified Möbius squared potential plus Hulthén potential to obtain closed form expressions for the energy eigenvalues and normalized radial wave-functions. In dealing with the spin-orbit coupling potential of the effective potential energy function, we have employed the Pekeris type approximation scheme, using our expressions for the bound state energy eigenvalues, we have deduced closed form expressions for the bound states energy eigenvalues and normalized radial wave-functions for Hulthén potential, modified Möbius square potential and Deng-Fan potential. Using the value 0.976865485225 for the parameter ω, we have computed bound state energy eigenvalues for various quantum states (in atomic units). We have also computed bound state energy eigenvalues for six diatomic molecules: HCl, LiH, TiH, NiC, TiC and ScF. The results we obtained are in near perfect agreement with numerical results in the literature and a clear demonstration of the superiority of the Pekeris-type approximation scheme over the Greene and Aldrich approximation scheme for the modified Möbius squares potential plus Hulthén potential.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850021 ◽  
Author(s):  
A. I. Ahmadov ◽  
Maria Naeem ◽  
M. V. Qocayeva ◽  
V. A. Tarverdiyeva

In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning–Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any [Formula: see text] angular momentum case via the Nikiforov–Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary [Formula: see text] states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to [Formula: see text] radial and [Formula: see text] orbital quantum numbers.


Author(s):  
S.M. Aslanova ◽  

This paper presents an analytical bound-state solution to the Duffin - Kemmer - Petiau equation for the new putative combined Manning - Rosen and Yukawa class potentials. Using the developed scheme to approximate and overcome the difficulties arising in the centrifugal part of the potential, the bound-state solution of the modified Duffin - Kemmer - Petiau equation is found. Analytical expressions of energy eigenvalue and the corresponding radial wave functions are obtained for an arbitrary value of the orbital quantum number l . Also, eigenfunctions are expressed in terms of hypergeometric functions. It is shown that energy levels and eigenfunctions are quite sensitive to the choice of radial and orbital quantum numbers.


Sign in / Sign up

Export Citation Format

Share Document