scholarly journals THE COLORED GLASS CONDENSATE AND EXTREME QCD

Author(s):  
E. IANCU
Keyword(s):  
2003 ◽  
Vol 554 (1-2) ◽  
pp. 21-27 ◽  
Author(s):  
Alex Krasnitz ◽  
Yasushi Nara ◽  
Raju Venugopalan

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2437
Author(s):  
Akpeko Gasonoo ◽  
Hyeon-Sik Ahn ◽  
Eun-Jeong Jang ◽  
Min-Hoi Kim ◽  
Jin Seog Gwag ◽  
...  

This study proposes front colored glass for building integrated photovoltaic (BIPV) systems based on multi-layered derivatives of glass/MoO3/Al2O3 with a process technology developed to realize it. Molybdenum oxide (MoO3) and aluminum oxide (Al2O3) layers are selected as suitable candidates to achieve thin multi-layer color films, owing to the large difference in their refractive indices. We first investigated from a simulation based on wave optics that the glass/MoO3/Al2O3 multi-layer type offers more color design freedom and a cheaper fabrication process when compared to the glass/Al2O3/MoO3 multi-layer type. Based on the simulation, bright blue and green were primarily fabricated on glass. It is further demonstrated that brighter colors, such as yellow and pink, can be achieved secondarily with glass/MoO3/Al2O3/MoO3 due to enhanced multi-interfacial reflections. The fabricated color glasses showed the desired optical properties with a maximum transmittance exceeding 80%. This technology exhibits promising potential in commercial BIPV system applications.


2018 ◽  
Vol 4 (7) ◽  
pp. 1646
Author(s):  
Hamed Dabiri ◽  
Mohammad Kazem Sharbatdar ◽  
A. Kavyani ◽  
M. Baghdadi

Glass is a special type of materials which is widely used in various forms and colors for different usages. Colored bottles comprise a large part of waste glass. To reduce the destructive effects of waste glass on the environment, it might be recycled. However, some indecomposable waste materials are buried. This will have harmful effects on the environment. A practical solution for reducing non-recyclable waste colored glass is using them as replacements for materials in other industries such as concrete industry. The effect of replacing aggregate with waste glass particle on the compressive strength and weight of concrete is investigated in this study. To achieve the goal, totally 27 cubic specimens were created; 6 specimens were made of concrete, while waste glass particle was added to the mix of other specimens. To prevent Alkali Silica Reaction (ASR), Microsilica was added to the mix of specimens containing glass. Generally, Results indicated that replacing aggregate with glass particle more than 30% lead to increment in compressive strength of concrete. The weight of concrete remains almost the same in all of the specimens. Briefly, based on the results it could be concluded that the optimum percentage for replacing aggregate with glass particle is 50%.


Author(s):  
Christoph U. Keller ◽  
Ramón Navarro ◽  
Bernhard R. Brandl
Keyword(s):  

2002 ◽  
Vol 56 (1) ◽  
pp. 83-90 ◽  
Author(s):  
John M. Berg ◽  
Karen C. Rau ◽  
D. Kirk Veirs ◽  
Laura A. Worl ◽  
James T. McFarlan ◽  
...  

The feasibility of using fiber-optic Raman probes to identify and quantify gases in enclosures is investigated by measuring and comparing detection thresholds using several probe and enclosure designs. Unfiltered, non-imaging, fiber-optic probes are shown to achieve lower detection thresholds than a filtered, imaging, fiberoptic probe, provided that light scattering within the sample enclosure is minimized and provided that a window is not used between the probe and the analyte gas. Achievable thresholds for hydrogen, oxygen, nitrogen, carbon monoxide, and methane in gas mixtures are demonstrated to be below 1 kPa with ten seconds signal acquisition and 0.1 kPa with twenty minutes signal acquisition with the use of 0.4 W of 532-nm excitation. Ambient carbon dioxide in air (.03 kPa) is shown to be detectable in a twenty minute acquisition, and ambient water vapor is well above the detection threshold. Background signals generated within the optical fibers remain the principal factors limiting detection thresholds. Factors affecting the magnitudes of these signals reaching the detector are investigated and discussed. A flat piece of light-absorbing colored glass tilted to direct reflected light away from the fiber-optic probe performs well as a beam stop to reduce background signal in a simple, cylindrical sample enclosure.


1985 ◽  
Vol 32 (8) ◽  
pp. 5529-5531 ◽  
Author(s):  
J. Warnock ◽  
D. D. Awschalom

2007 ◽  
Vol 31 ◽  
pp. 161-163 ◽  
Author(s):  
A. Verma ◽  
P.K. Bhatnagar ◽  
P.C. Mathur ◽  
S. Nagpal ◽  
P.K. Pandey ◽  
...  

Quantum Dots (QDs) of CdSxSe1-x embedded in borosilicate glass matrix (BGM) have been grown using colored glass filter (RG695). Double-Step (DS) annealing method was adopted in which nucleation is achieved at a lower temperature (475°C) without any crystallization. To obtain crystallization on these nucleation centers, the annealing temperature is raised to 575°C at which the nucleation rate is negligible. QDs of various average radii and volume fractions are grown by varying the annealing duration from 3 to 11hrs. QDs corresponding to higher annealing duration are found to have low size dispersion (SD) and high volume fraction but weak quantum confinement, while, the QDs corresponding to lower annealing durations have high quantum confinement due to their much lower radii as compare to Bohr exciton radius, their SD is high and volume fraction low. For nonlinear optical applications the SD must be low and volume fraction should be high. Attempt has been made to optimize the two parameters. Further it has been concluded that there is no contribution of the band edge recombination to the PL and the origin of the PL is due to shallow traps existing in the volume of the QDs. Studies of absorption and PL have also been made on the samples aged for 18, 24 and 36 months. It is found that the effect of aging is to increase the absorption coefficient, reduce the shallow trap centers and reduce the SD.


Sign in / Sign up

Export Citation Format

Share Document