GALAXY EVOLUTION FROM MULTIWAVELENGTH OBSERVATIONS

2001 ◽  
pp. 253-261
Author(s):  
LAURENT VIGROUX
2020 ◽  
Vol 638 ◽  
pp. A53
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Andreas Eckart ◽  
Françoise Combes ◽  
Persis Misquitta ◽  
...  

Gas inflow processes in the vicinity of galactic nuclei play a crucial role in galaxy evolution and supermassive black hole growth. Exploring the central kiloparsec of galaxies is essential to shed more light on this subject. We present near-infrared H- and K-band results of the nuclear region of the nearby galaxy NGC 1326, observed with the integral-field spectrograph SINFONI mounted on the Very Large Telescope. The field of view covers 9″ × 9″ (650 × 650 pc2). Our work is concentrated on excitation conditions, morphology, and stellar content. The nucleus of NGC 1326 was classified as a LINER, however in our data we observed an absence of ionised gas emission in the central r ∼ 3″. We studied the morphology by analysing the distribution of ionised and molecular gas, and thereby detected an elliptically shaped, circum-nuclear star-forming ring at a mean radius of 300 pc. We estimate the starburst regions in the ring to be young with dominating ages of < 10 Myr. The molecular gas distribution also reveals an elongated east to west central structure about 3″ in radius, where gas is excited by slow or mild shock mechanisms. We calculate the ionised gas mass of 8 × 105 M⊙ completely concentrated in the nuclear ring and the warm molecular gas mass of 187 M⊙, from which half is concentrated in the ring and the other half in the elongated central structure. The stellar velocity fields show pure rotation in the plane of the galaxy. The gas velocity fields show similar rotation in the ring, but in the central elongated H2 structure they show much higher amplitudes and indications of further deviation from the stellar rotation in the central 1″ aperture. We suggest that the central 6″ elongated H2 structure might be a fast-rotating central disc. The CO(3–2) emission observations with the Atacama Large Millimeter/submillimeter Array reveal a central 1″ torus. In the central 1″ of the H2 velocity field and residual maps, we find indications for a further decoupled structure closer to a nuclear disc, which could be identified with the torus surrounding the supermassive black hole.


2002 ◽  
Vol 4 ◽  
pp. 375-375
Author(s):  
T. T. Takeuchi ◽  
T. T. Ishii ◽  
T. Totani

Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The book starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more.


1999 ◽  
Vol 514 (1) ◽  
pp. 138-147 ◽  
Author(s):  
J. Kataoka ◽  
J. R. Mattox ◽  
J. Quinn ◽  
H. Kubo ◽  
F. Makino ◽  
...  

Nature ◽  
1970 ◽  
Vol 226 (5251) ◽  
pp. 1091-1092
Author(s):  

2008 ◽  
Author(s):  
Takeshi Uehara ◽  
Makoto Uemura ◽  
Yasushi Fukazawa ◽  
Masanori Ohno ◽  
Hideaki Katagiri ◽  
...  

2019 ◽  
Vol 15 (S356) ◽  
pp. 170-170
Author(s):  
Jari Kotilainen

AbstractWe present first results from our study of the host galaxies and environments of quasars in Galaxy And Mass Assembly (GAMA), a multiwavelength photometric and spectroscopic survey for ∼300,000 galaxies over ∼300 deg2, to a limiting magnitude of r ∼ 20 mag. We use a GAIA-selected sample of ∼350 quasars at z < 0.3 in GAMA. For all the quasars, we determine all surrounding GAMA galaxies and measure their star formation (SF) rate and SF history, and the host galaxy morphology and group membership of the quasars. As a comparison sample of inactive galaxies, we use 1000 subsets of galaxies in GAMA, matched in redshift and galaxy stellar mass to the quasars. We find that quasar activity does not depend on the large-scale environment (cluster/group/void), although quasars tend to prefer satellite location in their environment. Compared to inactive galaxies, quasars are preferentially hosted in bulge-dominated galaxies and have higher SF rates, both overall and averaged over the last 10 and 100 Myr. Quasars also have shorter median SF timescales, shorter median time since the last SF burst, and higher metallicity than inactive galaxies. We discuss these results in terms of triggering mechanisms of the quasar activity and the role of quasars in galaxy evolution.


2020 ◽  
Vol 15 (S359) ◽  
pp. 136-140
Author(s):  
Minju M. Lee ◽  
Ichi Tanaka ◽  
Rohei Kawabe

AbstractWe present studies of a protocluster at z =2.5, an overdense region found close to a radio galaxy, 4C 23.56, using ALMA. We observed 1.1 mm continuum, two CO lines (CO (4–3) and CO (3–2)) and the lower atomic carbon line transition ([CI](3P1-3P0)) at a few kpc (0″.3-0″.9) resolution. The primary targets are 25 star-forming galaxies selected as Hα emitters (HAEs) that are identified with a narrow band filter. These are massive galaxies with stellar masses of > 1010Mʘ that are mostly on the galaxy main sequence at z =2.5. We measure the molecular gas mass from the independent gas tracers of 1.1 mm, CO (3–2) and [CI], and investigate the gas kinematics of galaxies from CO (4–3). Molecular gas masses from the different measurements are consistent with each other for detection, with a gas fraction (fgas = Mgas/(Mgas+ Mstar)) of ≃ 0.5 on average but with a caveat. On the other hand, the CO line widths of the protocluster galaxies are typically broader by ˜50% compared to field galaxies, which can be attributed to more frequent, unresolved gas-rich mergers and/or smaller sizes than field galaxies, supported by our high-resolution images and a kinematic model fit of one of the galaxies. We discuss the expected scenario of galaxy evolution in protoclusters at high redshift but future large surveys are needed to get a more general view.


2019 ◽  
Vol 15 (S359) ◽  
pp. 72-77
Author(s):  
Luigi Spinoglio ◽  
Juan A. Fernández-Ontiveros ◽  
Sabrina Mordini

AbstractThe evolution of galaxies at Cosmic Noon (1 < z < 3) passed through a dust-obscured phase, during which most stars formed and black holes in galactic nuclei started to shine, which cannot be seen in the optical and UV, but it needs rest frame mid-to-far IR spectroscopy to be unveiled. At these frequencies, dust extinction is minimal and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. The Space Infrared telescope for Cosmology and Astrophysics (SPICA), currently under evaluation for the 5th Medium Size ESA Cosmic Vision Mission, fully redesigned with its 2.5-m mirror cooled down to T < 8K will perform such observations. SPICA will provide for the first time a 3-dimensional spectroscopic view of the hidden side of star formation and black hole accretion in all environments, from voids to cluster cores over 90% of cosmic time. Here we outline what SPICA will do in galaxy evolution studies.


Sign in / Sign up

Export Citation Format

Share Document