Strain Rate Sensitivity of a Ferrite and Martensite Dual Phase Steel

Author(s):  
Q. S. Wu ◽  
X. Wei ◽  
Y. L. Wang ◽  
L. Q. Heng
2018 ◽  
Vol 115 (5) ◽  
pp. 507
Author(s):  
Onur Çavusoglu ◽  
Hakan Gürün ◽  
Serkan Toros ◽  
Ahmet Güral

In this study, strain hardening and strain rate sensitivity behavior of commercial DP1000 dual phase steel have been examined in detail at temperatures of 25 °C, 100 °C, 200 °C and 300 °C, at strain rates of 0.0016 s−1 and 0.16 s−1. As the strain rate has increased, the yield strength has increased but no significant change in tensile strength and strain hardening coefficient has been observed. As the temperature has increased, the yield and tensile strength has decreased in between 25 and 200 °C but it has showed an increase at 300 °C. The strain hardening coefficient has increased in parallel with temperature increase. It has been seen that the strain rate sensitivity has not been affected by temperature. No significant difference in the hardening rate has appeared in between 25 and 200 °C, but the highest value has been calculated at 300 °C. It has been determined that the fracture behavior has occurred earlier and load carrying capacity on necking has reduced with the increase of strain rate and not significantly affected by temperature.


2017 ◽  
Vol 898 ◽  
pp. 810-817 ◽  
Author(s):  
Ran Wei ◽  
Ren Bo Song ◽  
Long Jiang ◽  
Heng Jun Cai

The DP1000 cold-rolled dual phase steel, the thickness of which is 1.2 mm, was required to do the tensile test under nine different strain rates from 10-4 s-1 to 1000 s-1. The mechanical properties and morphologies of the steel were obtained and analyzed. According to the C-J model, the plastic deformation characteristics of dual phase steel under different strain rates were studied. By means of transmission electron microscope (TEM), the morphologies of ferrite and martensite in the dynamic were observed. Finally, the constitutive models of quasi-static and high strain rate were established by using the modified Johnson-Cook model. The results reveal that DP1000 dual phase steel has obvious strain rate sensitivity, and it is a relatively pure ferrite and martensite dual phase structure. There are two stage strain hardenging characteristics in DP1000. In the first stage, the strain hardening ability of ferrite is higher, and the second stage is martensite deformation stage, the strain hardening ability is lower. The modified J-C constitutive model has high fitting effect, and the experimental results are matched with the fitting values.


2016 ◽  
Vol 107 ◽  
pp. 298-309 ◽  
Author(s):  
Tea-Sung Jun ◽  
Zhen Zhang ◽  
Giorgio Sernicola ◽  
Fionn P.E. Dunne ◽  
T. Benjamin Britton

Sign in / Sign up

Export Citation Format

Share Document