Temperature Characters for 6063 Aluminum Tube Within Resistance Heating Process for Hot Gas Forming

Author(s):  
G. N. Chu ◽  
M. Q. Ding ◽  
G. Liu
Author(s):  
Max Bialaschik ◽  
Volker Schöppner ◽  
Mirko Albrecht ◽  
Michael Gehde

AbstractThe joining of plastics is required because component geometries are severely restricted in conventional manufacturing processes such as injection molding or extrusion. In addition to established processes such as hot plate welding, infrared welding, or vibration welding, hot gas butt welding is becoming more and more important industrially due to its advantages. The main benefits are the contactless heating process, the suitability for glass fiber reinforced, and high-temperature plastics as well as complex component geometries. However, various degradation phenomena can occur during the heating process used for economic reasons, due to the presence of oxygen in the air and to the high gas temperatures. In addition, the current patent situation suggests that welding with an oxidizing gas is not permissible depending on the material. On the other hand, however, there is experience from extrusion welding, with which long-term resistant weld seams can be produced using air. Investigations have shown that the same weld seam properties can be achieved with polypropylene using either air or nitrogen as the process gas. Experimental investigations have now been carried out on the suitability of different gases with regard to the weld seam quality when welding polyamides, which are generally regarded as more prone to oxidation. The results show that weld strengths are higher when nitrogen is used as process gas. However, equal weld strengths can be achieved with air and nitrogen when the material contains heat stabilizers.


2021 ◽  
Vol 288 ◽  
pp. 116904
Author(s):  
Kehuan Wang ◽  
Yang Jiao ◽  
Xiaojuan Wu ◽  
Bao Qu ◽  
Xiaosong Wang ◽  
...  

2014 ◽  
Vol 1 ◽  
pp. 5 ◽  
Author(s):  
Tomoyoshi Maeno ◽  
Ken-ichiro Mori ◽  
Kouji Fujimoto

2018 ◽  
Vol 1063 ◽  
pp. 012172
Author(s):  
Pengzhi Cheng ◽  
Yulong Ge ◽  
Yong Xia ◽  
Qing Zhou

2020 ◽  
Vol 4 (2) ◽  
pp. 56 ◽  
Author(s):  
Ali Talebi-Anaraki ◽  
Mehdi Chougan ◽  
Mohsen Loh-Mousavi ◽  
Tomoyoshi Maeno

Hot metal gas forming (HMGF) is a desirable way for the automotive industry to produce complex metallic parts with poor formability, such as aluminum alloys. A simple hot gas forming method was developed to form aluminum alloy tubes using flame heating. An aluminum alloy tube was heated by a flame torch while the tube was rotated and compressed using a lathe machine and simultaneously pressurized with a constant air pressure. The effects of the internal pressure and axial feeding on expansion and wall thickness distribution were examined. The results showed that the proposed gas forming method was effective for forming aluminum alloy tubes. It was also indicated that axial feeding is a vital parameter to prevent reductions in wall thickness by supplying the material flow during the forming process.


Sign in / Sign up

Export Citation Format

Share Document