The Role of Water in Organic Aerosol Multiphase Chemistry: Focus on Partitioning and Reactivity

2017 ◽  
pp. 95-184 ◽  
Author(s):  
R. Zhao ◽  
A. K. Y. Lee ◽  
C. Wang ◽  
F. Wania ◽  
J. P. S. Wong ◽  
...  
Keyword(s):  
Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 707
Author(s):  
Petros Vasilakos ◽  
Yongtao Hu ◽  
Armistead Russell ◽  
Athanasios Nenes

Formation of aerosol from biogenic hydrocarbons relies heavily on anthropogenic emissions since they control the availability of species such as sulfate and nitrate, and through them, aerosol acidity (pH). To elucidate the role that acidity and emissions play in regulating Secondary Organic Aerosol (SOA), we utilize the 2013 Southern Oxidant and Aerosol Study (SOAS) dataset to enhance the extensive mechanism of isoprene epoxydiol (IEPOX)-mediated SOA formation implemented in the Community Multiscale Air Quality (CMAQ) model (Pye et al., 2013), which was then used to investigate the impact of potential future emission controls on IEPOX OA. We found that the Henry’s law coefficient for IEPOX was the most impactful parameter that controls aqueous isoprene OA products, and a value of 1.9 × 107 M atm−1 provides the best agreement with measurements. Non-volatile cations (NVCs) were found in higher-than-expected quantities in CMAQ and exerted a significant influence on IEPOX OA by reducing its production by as much as 30% when present. Consistent with previous literature, a strong correlation of isoprene OA with sulfate, and little correlation with acidity or liquid water content, was found. Future reductions in SO2 emissions are found to not affect this correlation and generally act to increase the sensitivity of IEPOX OA to sulfate, even in extreme cases.


2013 ◽  
Vol 13 (1) ◽  
pp. 2913-2954 ◽  
Author(s):  
P. Renard ◽  
F. Siekmann ◽  
A. Gandolfo ◽  
J. Socorro ◽  
G. Salque ◽  
...  

Abstract. It is now accepted that one of the important pathways of Secondary Organic Aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the liquid phase chemical mechanisms leading to macromolecules are still not well understood. For α-dicarbonyl precursors, such as methylglyoxal and glyoxal, radical reactions through OH-oxidation produce oligomers, irreversibly and faster than accretion reactions. Methyl vinyl ketone (MVK) was chosen in the present study as it is an α, β-unsaturated carbonyl that can undergo such reaction pathways in the aqueous phase and forms even high molecular weight oligomers. We present here experiments on the aqueous phase OH-oxidation of MVK, performed under atmospheric relevant conditions. Using NMR and UV absorption spectroscopy, high and ultra-high resolution mass spectrometry, we show that the fast formation of oligomers up to 1800 Da is due to radical oligomerization of MVK, and 13 series of oligomers (out of a total of 26 series) are identified. The influence of atmospherically relevant parameters such as temperature, initial concentrations of MVK and dissolved oxygen are presented and discussed. In agreement with the experimental observations, we propose a chemical mechanism of OH-oxidation of MVK in the aqueous phase that proceeds via radical oligomerization of MVK on the olefin part of the molecule. This mechanism highlights the paradoxical role of dissolved O2: while it inhibits oligomerization reactions, it contributes to produce oligomerization initiator radicals, which rapidly consume O2, thus leading to the supremacy of oligomerization reactions after several minutes of reaction. These processes, together with the large ranges of initial concentrations investigated (60–656 μM of dissolved O2 and 0.2–20 mM of MVK) show the fundamental role that O2 likely plays in atmospheric organic aerosol.


2015 ◽  
Vol 15 (15) ◽  
pp. 8871-8888 ◽  
Author(s):  
S. H. Budisulistiorini ◽  
X. Li ◽  
S. T. Bairai ◽  
J. Renfro ◽  
Y. Liu ◽  
...  

Abstract. A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time-resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~ 9 % (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~ 97 % of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2 > 0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~ 26 % (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32 % of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO ~ 0.03 ppb), carbon monoxide (CO ~ 116 ppb), and black carbon (BC ~ 0.2 μg m−3). Particle-phase sulfate is fairly correlated (r2 ~ 0.3) with both methacrylic acid epoxide (MAE)/hydroxymethyl-methyl-α-lactone (HMML)- (henceforth called methacrolein (MACR)-derived SOA tracers) and IEPOX-derived SOA tracers, and more strongly correlated (r2 ~ 0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the MACR-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NOy; r2 = 0.38) and nitrate (r2 = 0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC), box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy (r2 ~ 0.5 and ~ 0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC as well as aerosol viscosity and morphology becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions.


2011 ◽  
Vol 11 (8) ◽  
pp. 3879-3894 ◽  
Author(s):  
J. L. Fry ◽  
A. Kiendler-Scharr ◽  
A. W. Rollins ◽  
T. Brauers ◽  
S. S. Brown ◽  
...  

Abstract. The formation of organic nitrates and secondary organic aerosol (SOA) were monitored during the NO3 + limonene reaction in the atmosphere simulation chamber SAPHIR at Research Center Jülich. The 24-h run began in a purged, dry, particle-free chamber and comprised two injections of limonene and oxidants, such that the first experiment measured SOA yield in the absence of seed aerosol, and the second experiment yields in the presence of 10 μg m−3 seed organic aerosol. After each injection, two separate increases in aerosol mass were observed, corresponding to sequential oxidation of the two limonene double bonds. Analysis of the measured NO3, limonene, product nitrate concentrations, and aerosol properties provides mechanistic insight and constrains rate constants, branching ratios and vapor pressures of the products. The organic nitrate yield from NO3 + limonene is ≈30%. The SOA mass yield was observed to be 25–40%. The first injection is reproduced by a kinetic model. PMF analysis of the aerosol composition suggests that much of the aerosol mass results from combined oxidation by both O3 and NO3, e.g., oxidation of NO3 + limonene products by O3. Further, later aerosol nitrate mass seems to derive from heterogeneous uptake of NO3 onto unreacted aerosol alkene.


2020 ◽  
Author(s):  
Yiqi Zheng ◽  
Joel A. Thornton ◽  
Nga Lee Ng ◽  
Hansen Cao ◽  
Daven K. Henze ◽  
...  

Abstract. Organic aerosol (OA), with a large biogenic fraction in summertime southeast US, adversely impacts on air quality and human health. Stringent air quality controls have recently reduced anthropogenic pollutants including sulfate, whose impact on OA remains unclear. Three filter measurement networks provide long-term constraints on the sensitivity of OA to changes in inorganic species, including sulfate and ammonia. The 2000–2013 summertime OA decreases by 1.7~1.9 %/year with little month-to-month variability, while sulfate declines rapidly with significant monthly difference in early 2000s. In contrast, modeled OA from a chemical-transport model (GEOS-Chem) decreases by 4.9 %/year with much larger month-to-month variability, largely due to the predominant role of acid-catalyzed reactive uptake of epoxydiols (IEPOX) onto sulfate. The overestimated modeled OA dependence on sulfate can be improved by implementing a coating effect and assuming constant aerosol acidity, suggesting the needs to revisit IEPOX reactive uptake in current models. Our work highlights the importance of secondary OA formation pathways that are weakly dependent on inorganic aerosol in a region that is heavily influenced by both biogenic and anthropogenic emissions.


2009 ◽  
Vol 9 (4) ◽  
pp. 17665-17704 ◽  
Author(s):  
S. Samy ◽  
B. Zielinska

Abstract. Secondary organic aerosol (SOA) production was observed at significant levels in a series of modern diesel exhaust (DE) aging experiments conducted at the European Outdoor Photoreactor/Simulation Chamber (EUPHORE). The greatest production occurred in DE with toluene addition experiments (>40%), followed by DE with HCHO (for OH radical generation) experiments. A small amount of SOA (3%) was observed for DE in dark with N2O5 (for NO3 radical production) experiments. The analysis for a limited number (54) of polar organic compounds (POC) was conducted to assess the composition of modern DE and the formation of photochemical transformation products. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA% yield (in relation to toluene) of 5.3±1.6%, which is compared to past chamber studies that evaluated the impact of [tol]o/[NOx]o on SOA production in more simplified mixtures.


Sign in / Sign up

Export Citation Format

Share Document