scholarly journals Is there a quantum gravity effect on the cosmic microwave background power spectrum?

Author(s):  
Donato Bini ◽  
Giampiero Esposito
2018 ◽  
Vol 168 ◽  
pp. 03001
Author(s):  
Je-An Gu ◽  
Sang Pyo Kim ◽  
Che-Min Shen

Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.


Author(s):  
Abhay Ashtekar ◽  
Brajesh Gupt ◽  
V. Sreenath

While the standard, six-parameter, spatially flat ΛCDM model has been highly successful, certain anomalies in the cosmic microwave background bring out a tension between this model and observations. The statistical significance of any one anomaly is small. However, taken together, the presence of two or more of them imply that according to standard inflationary theories we live in quite an exceptional Universe. We revisit the analysis of the PLANCK collaboration using loop quantum cosmology, where an unforeseen interplay between the ultraviolet and the infrared makes the primordial power spectrum scale dependent at very small k. Consequently, we are led to a somewhat different ΛCDM Universe in which anomalies associated with large scale power suppression and the lensing amplitude are both alleviated. The analysis also leads to new predictions for future observations. This article is addressed both to cosmology and loop quantum gravity communities, and we have attempted to make it self-contained.


2007 ◽  
Vol 76 (8) ◽  
Author(s):  
Salman Habib ◽  
Katrin Heitmann ◽  
David Higdon ◽  
Charles Nakhleh ◽  
Brian Williams

2005 ◽  
Vol 14 (08) ◽  
pp. 1347-1364 ◽  
Author(s):  
XIULIAN WANG ◽  
BO FENG ◽  
MINGZHE LI ◽  
XUE-LEI CHEN ◽  
XINMIN ZHANG

In the "natural inflation" model, the inflaton potential is periodic. We show that Planck scale physics may induce corrections to the inflaton potential, which is also periodic with a greater frequency. Such high frequency corrections produce oscillating features in the primordial fluctuation power spectrum, which are not entirely excluded by the current observations and may be detectable in high precision data of cosmic microwave background (CMB) anisotropy and large scale structure (LSS) observations.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050225 ◽  
Author(s):  
Riasat Ali ◽  
Muhammad Asgher ◽  
M. F. Malik

This paper is devoted to the tunneling radiation and quantum gravity effect on tunneling radiation of neutral regular black hole in Rastall gravity. We analyzed the tunneling radiation and Hawking temperature of neutral regular black hole by applying the Hamilton-Jacobi ansatz phenomenon. Lagrangian wave equation have been investigated by generalized uncertainty principle (GUP), using the WKB-approximation and calculated the tunneling rate as well as temperature. Furthermore, we analyzed the temperature of this neutral regular black hole in the presence of gravity. The stability and instability of neutral regular black hole are also analyzed.


2005 ◽  
Vol 216 ◽  
pp. 43-50
Author(s):  
J. B. Peterson ◽  
A. K. Romer ◽  
P. L. Gomez ◽  
P. A. R. Ade ◽  
J. J. Bock ◽  
...  

The Arcminute Cosmology Bolometer Array Receiver (Acbar) is a multifrequency millimeter-wave receiver optimized for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies. Acbar was installed on the 2.1 m Viper telescope at the South Pole in January 2001 and the results presented here incorporate data through July 2002. The power spectrum of the CMB at 150 GHz over the range ℓ = 150 — 3000 measured by Acbar is presented along with estimates for the values of the cosmological parameters within the context of ΛCDM models. The inclusion of ΩΛ greatly improves the fit to the power spectrum. Three-frequency images of the SZ decrement/increment are also presented for the galaxy cluster 1E0657–67.


1998 ◽  
Vol 57 (4) ◽  
pp. 2117-2137 ◽  
Author(s):  
J. R. Bond ◽  
A. H. Jaffe ◽  
L. Knox

Author(s):  
Yuto Minami

Abstract We study a strategy to determine miscalibrated polarization angles of cosmic microwave background (CMB) experiments using the observed $EB$ polarization power spectra of CMB and Galactic foreground emission. We apply the methodology of Y. Minami et al. (Prog. Theor. Exp. Phys. 2019, 083E02, 2019), developed for full-sky observations to ground-based experiments such as Simons Observatory. We take into account the $E$-to-$B$ leakage and $\ell$-to-$\ell$ covariance due to partial sky coverage using the public code NaMaster. We show that our method yields an unbiased estimate of miscalibrated angles. Our method also enables simultaneous determination of miscalibrated angles and the intrinsic $EB$ power spectrum of polarized dust emission when the latter is proportional to $\sqrt{C_\ell^{EE}C_\ell^{BB}}$ and $C_\ell^{BB}$ is proportional to $C_\ell^{EE}$.


Sign in / Sign up

Export Citation Format

Share Document