76. EXPERIMENTAL FLUME SIMULATION OF SHOREFACE NOURISHMENTS UNDER STORM CONDITIONS

Author(s):  
Florent Grasso ◽  
Hervé Michallet ◽  
Eric Barthélemy
Keyword(s):  
2014 ◽  
Vol 39 ◽  
pp. 81-87
Author(s):  
T. Kakinuma ◽  
T. Inoue ◽  
R. Akahori ◽  
A. Takeda

Abstract. The authors made erodible bed experiments under steady flow condition at the Chiyoda Experimental Flume, a large-scale facility constructed on the floodplain of the Tokachi River, and observed sand waves on the bed of the flume. In this study, the characteristics of the sand waves are examined along the longitudinal survey lines and confirmed to be dunes. Next, the authors estimated Manning's roughness coefficients from the observed hydraulic values and assumed that the rise of the coefficients attributed to the sand wave development. Finally, vertical flow distribution on the sand waves are examined, and observed velocity distribution on the crest of waves found to be explained by the logarithmic distribution theory.


2021 ◽  
Author(s):  
Jan-Pascal Boos ◽  
Benjamin Gilfedder ◽  
Sven Frei

<p>Rivers and streams are the dominant transport vectors for microplastic (MP) input into marine environments. During transport, complex physicochemical interactions between particles, water and river sediments influence particle mobility and retention. The specific transport mechanisms of MP in fluvial systems are not yet fully understood, and the main reason lies in the limitation in reliable data derived from experimental analysis.</p><p>In our subproject of the ‘CRC 1357 Microplastics’, we investigate the hydrodynamic mechanisms that control the transport and retention behavior of MP in open channel flows and streambed sediments. In an experimental flume environment, we create realistic hydrodynamic and hyporheic flow conditions by using various porous media (e.g. glass beads or sand) and bedform structures (e.g. riffle-pool sequences, ripples and dunes), modelled from real stream systems.</p><p>The method developed here can quantitatively analyze the transport of pore-scale particles (1-40 µm) based on fluorometric techniques. Particle velocity distributions and particle transport are measured using Particle-Image-Velocimetry and Laser-Doppler-Velocimetry. With our setup, we can quantitatively investigate time-resolved MP transport and retention through the aqueous and solid phase in a flume scale experiment.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-4
Author(s):  
Qin Guodong ◽  
Pang Quanru ◽  
Chen Zhongxian

Ocean wave energy is a high energy density and renewable resource. High power conversion rate is an advantage of linear generators to be the competitive candidates for ocean wave energy extraction system. In this paper, the feasibility of a wave energy extraction system by linear generator has been verified in an experimental flume. Besides, the analytical equations of heaving buoy oscillating in vertical direction are proposed, and the analytical equations are proved conveniently. What is more, the active power output of linear generator of wave energy extraction system in experimental flume is presented. The theoretical analysis and experimental results play a significant role for future wave energy extraction system progress in real ocean waves.


2014 ◽  
Vol 2 (1) ◽  
pp. 136-143 ◽  
Author(s):  
Daisuke TOBITA ◽  
Takaharu KAKINUMA ◽  
Hiroshi YOKOYAMA ◽  
Atsushi TAKEDA

2018 ◽  
Vol 40 ◽  
pp. 02007 ◽  
Author(s):  
Cristina Rachelly ◽  
Volker Weitbrecht ◽  
David F. Vetsch ◽  
Robert M. Boes

River widening is a common restoration approach to mitigate the adverse effects of past stream alterations on infrastructure and the riparian ecosystem by stabilizing the river bed and enhancing habitat heterogeneity. In this study, two river widening approaches, excavated and dynamic, are described for the case of moderately steep gravel-bed rivers in the Alpine foothills, with a focus on dynamic river widening. As most channelized rivers exhibit ongoing degradation due to the lack of sediment supply and efforts to restore sediment transport are increasing, the consideration of the response of river widenings to variable sediment supply is important. For this purpose, insights from regime theory are applied to river widening and several experimental flume and field studies on channel response to variable sediment supply are reviewed. Dynamic river widenings are expected to be morphologically active in weakly degraded rivers with sufficient sediment supply, while they may not be an appropriate restoration approach for highly degraded rivers due to persistent impairment of morphological activity.


Sign in / Sign up

Export Citation Format

Share Document