streambed sediments
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Nataline Simon ◽  
Olivier Bour ◽  
Mikaël Faucheux ◽  
Nicolas Lavenant ◽  
Hugo Le Lay ◽  
...  

Abstract. FO-DTS (Fiber Optic Distributed Temperature Sensing) technology has been widely developed to quantify exchanges between groundwater and surface water during the last decade. In this study, we propose, for the first time, to combine long-term passive-DTS measurements and active-DTS measurements in order to highlight their respective potential to locate and quantify groundwater discharge into streams. On the one hand, passive-DTS measurements consist in monitoring natural temperature fluctuations to detect and localize groundwater inflows and characterize the temporal pattern of exchanges. Although easy to set up, the quantification of fluxes with this approach often remains difficult since it relies on energy balance models or on the coupling of distributed temperature measurements with additional punctual measurements. On the other hand, active-DTS methods, recently developed in hydrogeology, consist in continuously monitoring temperature changes induced by a heat source along a FO cable. Recent developments showed that this approach, although more complex to set up than passive-DTS measurements, can address the challenge of quantifying groundwater fluxes and their spatial distribution. Yet it has almost never been conducted in streambed sediments. In this study, both methods are combined by deploying FO cables in the streambed sediments of a first- and second-order stream within a small agricultural watershed. A numerical model is used to interpret passive-DTS measurements and highlight the temporal and spatial dynamic of groundwater discharge over the annual hydrological cycle. We underline the difficulties and the limitations of deploying a single FO cable to investigate groundwater discharge and show the impact of uncertainty on sediments thermal properties on the quantification of groundwater inflows. On the opposite, the active-DTS experiment allows estimating the spatial distribution of both the thermal conductivity and the groundwater flux at high resolution with very low uncertainties all along the heated section of FO cable. Our results highlight the added values of conducting active-DTS experiments, eventually combined with passive-DTS measurements, to fully investigate and characterize patterns of groundwater-stream water exchanges at the stream scale. The combination of both methods allows discussing the impact of topography and hydraulic conductivity variations on the variability of groundwater inflows in headwater catchments.


2021 ◽  
Author(s):  
Jan-Pascal Boos ◽  
Benjamin Gilfedder ◽  
Sven Frei

<p>Rivers and streams are the dominant transport vectors for microplastic (MP) input into marine environments. During transport, complex physicochemical interactions between particles, water and river sediments influence particle mobility and retention. The specific transport mechanisms of MP in fluvial systems are not yet fully understood, and the main reason lies in the limitation in reliable data derived from experimental analysis.</p><p>In our subproject of the ‘CRC 1357 Microplastics’, we investigate the hydrodynamic mechanisms that control the transport and retention behavior of MP in open channel flows and streambed sediments. In an experimental flume environment, we create realistic hydrodynamic and hyporheic flow conditions by using various porous media (e.g. glass beads or sand) and bedform structures (e.g. riffle-pool sequences, ripples and dunes), modelled from real stream systems.</p><p>The method developed here can quantitatively analyze the transport of pore-scale particles (1-40 µm) based on fluorometric techniques. Particle velocity distributions and particle transport are measured using Particle-Image-Velocimetry and Laser-Doppler-Velocimetry. With our setup, we can quantitatively investigate time-resolved MP transport and retention through the aqueous and solid phase in a flume scale experiment.</p>


2021 ◽  
Author(s):  
Jen Drummond ◽  
José Gonçalves ◽  
Tomás Aquino ◽  
Susana Bernal ◽  
Esperança Gacia ◽  
...  

<p>Rivers transport pathogenic microorganisms (including fecal indicator bacteria and human enteric viruses) from point and non-point sources over long distances, posing a direct risk for human health. Yet, pathogens in surface waters can be deposited and transitorily immobilized and accumulated together with other fine particles in streambed sediments, mostly within the top few centimeters. These dynamic fine particle standing stocks retain and delay downstream transmission of pathogens during baseflow conditions, but contribute to their resuspension and transport downstream during stormflow events. Direct measurements of pathogen accumulation in streambed sediments are rare. Further, it is unknown whether pathogen accumulation is constrained near to the point source inputs or if the continuous deposition and resuspension of pathogens results in the transmission of active pathogens further downstream. </p><p>In this study, we analyze fine particle standing stocks along a 1 km reach of an intermittent Mediterranean stream receiving inputs from the effluent of a wastewater treatment plant (WWTP), during a summer drought when the effluent constituted 100% of the stream flow, and thus, large accumulation and persistence of pathogens along the streambed was expected. We measured abundance of total bacteria, <em>Escherichia coli</em> (as a fecal indicator bacteria), and presence of enteric rotavirus (RoV) and norovirus (NoV). We also monitored environmental variables such as water temperature, dissolved oxygen, total benthic particulate matter, and fraction of organic matter.  Abundance of <em>E. coli</em>, based on qPCR detection, was high  (~ 1 ng/μL) along the first 100 m downstream of the WWTP effluent input, and we found trace amounts of RoV and NoV.  Furthermore, <em>E. coli</em> was present along the first km downstream of the WWTP effluent input with a logarithmic decline in concentration with distance. These results were combined with a particle tracking model that uses stream water velocity as an input and accounts for hyporheic exchange, pathogen immobilization, degradation and resuspension during baseflow and stormflow conditions.  Model results indicate that even at very low flows (<20 L/s), pathogens can be transported over long distances (> 1km), but that the extent of longitudinal transport varies among pathogen types.  These results demonstrate that benthic standing stocks of fine particles act as hot spots of pathogen accumulation in streams, and that the interplay between immobilization, degradation, the extent of resuspension and downstream transport during storms and time between storms determine pathogen concentrations in the streambed. </p><p> </p>


2019 ◽  
Vol 83 (3) ◽  
pp. 225-236 ◽  
Author(s):  
CA Griffith ◽  
P Shang ◽  
Y Lu ◽  
EJ Theuerkauf ◽  
AB Rodriguez ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1436 ◽  
Author(s):  
Brian Babak Mojarrad ◽  
Andrea Betterle ◽  
Tanu Singh ◽  
Carolina Olid ◽  
Anders Wörman

Streambed morphology, streamflow dynamics, and the heterogeneity of streambed sediments critically controls the interaction between surface water and groundwater. The present study investigated the impact of different flow regimes on hyporheic exchange in a boreal stream in northern Sweden using experimental and numerical approaches. Low-, base-, and high-flow discharges were simulated by regulating the streamflow upstream in the study area, and temperature was used as the natural tracer to monitor the impact of the different flow discharges on hyporheic exchange fluxes in stretches of stream featuring gaining and losing conditions. A numerical model was developed using geomorphological and hydrological properties of the stream and was then used to perform a detailed analysis of the subsurface water flow. Additionally, the impact of heterogeneity in sediment permeability on hyporheic exchange fluxes was investigated. Both the experimental and modelling results show that temporally increasing flow resulted in a larger (deeper) extent of the hyporheic zone as well as longer hyporheic flow residence times. However, the result of the numerical analysis is strongly controlled by heterogeneity in sediment permeability. In particular, for homogeneous sediments, the fragmentation of upwelling length substantially varies with streamflow dynamics due to the contribution of deeper fluxes.


2019 ◽  
Vol 19 (5) ◽  
pp. 2624-2633 ◽  
Author(s):  
Simon D. V. Clarendon ◽  
David M. Weaver ◽  
Peter M. Davies ◽  
Neil A. Coles

2018 ◽  
Vol 19 (4) ◽  
pp. 2007-2019 ◽  
Author(s):  
Johnbull O. Dickson ◽  
Melanie A. Mayes ◽  
Scott C. Brooks ◽  
Tonia L. Mehlhorn ◽  
Kenneth A. Lowe ◽  
...  
Keyword(s):  

2018 ◽  
Vol 22 (3) ◽  
pp. 1917-1929 ◽  
Author(s):  
Eddie W. Banks ◽  
Margaret A. Shanafield ◽  
Saskia Noorduijn ◽  
James McCallum ◽  
Jörg Lewandowski ◽  
...  

Abstract. Profiles of temperature time series are commonly used to determine hyporheic flow patterns and hydraulic dynamics in the streambed sediments. Although hyporheic flows are 3-D, past research has focused on determining the magnitude of the vertical flow component and how this varies spatially. This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude up to 200 mm below the water–sediment interface. Short, 1 min heat pulses were injected at one of the three heat sources and the temperature response was monitored over a period of 30 min. Breakthrough curves from each of the sensors were analysed using a heat transport equation. Parameter estimation and uncertainty analysis was undertaken using the differential evolution adaptive metropolis (DREAM) algorithm, an adaption of the Markov chain Monte Carlo method, to estimate the flux and its orientation. Measurements were conducted in the field and in a sand tank under an extensive range of controlled hydraulic conditions to validate the method. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes at the water–streambed interface.


Sign in / Sign up

Export Citation Format

Share Document