hyporheic flow
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 25)

H-INDEX

25
(FIVE YEARS 3)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Robyn L. Bilski ◽  
Joseph M. Wheaton ◽  
Joseph E. Merz

Adult salmonids are frequently observed building redds adjacent to in-channel structure, including boulders and large woody debris. These areas are thought to be preferentially selected for a variety of reasons, including energy and/or predation refugia for spawners, and increased hyporheic exchange for incubating embryos. This research sought to quantify in-channel structure effects on local hydraulics and hyporheic flow and provide a mechanistic link between these changes and the survival, development, and growth of Chinook salmon Oncorhynchus tshawytscha embryos. Data were collected in an eight-kilometer reach, on the regulated lower Mokelumne River, in the California Central Valley. Nine paired sites, consisting of an area containing in-channel structure paired with an adjacent area lacking in-channel structure, were evaluated. Results indicated that in-channel structure disrupts surface water velocity patterns, creating pressure differences that significantly increase vertical hydraulic gradients within the subsurface. Overall, in-channel structure did not significantly increase survival, development, and growth of Chinook salmon embryos. However, at several low gradient downstream sites containing in-channel structure, embryo survival, development, and growth were significantly higher relative to paired sites lacking such features. Preliminary data indicate that adding or maintaining in-channel structure, including woody material, in suboptimal spawning reaches improves the incubation environment for salmonid embryos in regulated reaches of a lowland stream. More research examining temporal variation and a full range of incubation depths is needed to further assess these findings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Jaeger ◽  
Malte Posselt ◽  
Jonas L. Schaper ◽  
Andrea Betterle ◽  
Cyrus Rutere ◽  
...  

Author(s):  
William Jeffery Reeder ◽  
Jose Roberto Moreto ◽  
Xiaofeng Liu ◽  
Daniele Tonina

The quantification of velocity and pressure fields over streambeds is important for predicting sediment mobility and water exchange between stream and sediment interstitial spaces (Schmeeckle and Nelson, 2003; Tonina and Buffington, 2009). The latter is typically referred as hyporheic flow, which consists of surface water that flows through the streambed sediment pores (Tonina and Buffington, 2009). These fluxes are mainly driven by pressure gradients at the water sediment interface. In this paper, we report an experimental investigation of the time-averaged velocity and pressure field, quantified in a set of laboratory experiments using stereo PIV (Particle Image Velocimetry) with a non-toxic index-matched fluid, for an open channel flow around a barely submerged vertical cylinder as a model for plant stalk over a plane bed of coarse granular sediment, mimicking a stream gravel bed. This is the first time that such a velocity and pressure field is characterized experimentally for a free surface flow with irregular floor contour.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Jaeger ◽  
Malte Posselt ◽  
Jonas L. Schaper ◽  
Andrea Betterle ◽  
Cyrus Rutere ◽  
...  

AbstractUrban streams receive increasing loads of organic micropollutants from treated wastewaters. A comprehensive understanding of the in-stream fate of micropollutants is thus of high interest for water quality management. Bedforms induce pumping effects considerably contributing to whole stream hyporheic exchange and are hotspots of biogeochemical turnover processes. However, little is known about the transformation of micropollutants in such structures. In the present study, we set up recirculating flumes to examine the transformation of a set of micropollutants along single flowpaths in two triangular bedforms. We sampled porewater from four locations in the bedforms over 78 days and analysed the resulting concentration curves using the results of a hydrodynamic model in combination with a reactive transport model accounting for advection, dispersion, first-order removal and retardation. The four porewater sampling locations were positioned on individual flowpaths with median solute travel times ranging from 11.5 to 43.3 h as shown in a hydrodynamic model previously. Highest stability was estimated for hydrochlorothiazide on all flowpaths. Lowest detectable half-lives were estimated for sotalol (0.7 h) and sitagliptin (0.2 h) along the shortest flowpath. Also, venlafaxine, acesulfame, bezafibrate, irbesartan, valsartan, ibuprofen and naproxen displayed lower half-lives at shorter flowpaths in the first bedform. However, the behavior of many compounds in the second bedform deviated from expectations, where particularly transformation products, e.g. valsartan acid, showed high concentrations. Flowpath-specific behavior as observed for metformin or flume-specific behavior as observed for metoprolol acid, for instance, was attributed to potential small-scale or flume-scale heterogeneity of microbial community compositions, respectively. The results of the study indicate that the shallow hyporheic flow field and the small-scale heterogeneity of the microbial community are major controlling factors for the transformation of relevant micropollutants in river sediments.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Laura E. Coulson ◽  
Jakob Schelker ◽  
Katrin Attermeyer ◽  
Christian Griebler ◽  
Thomas Hein ◽  
...  

AbstractDroughts are expected to become more common with climate change resulting in more frequent occurrences of flow intermittency in temperate streams. As intermittency has deleterious effects on fluvial microbial biofilms, there is a need to better understand how droughts affect the microbial functioning and thereby nutrient and organic matter processing in temperate stream ecosystems. Here, the hyporheic zone is of particular importance as it has been shown to be a hot spot for biogeochemical activity under flow intermittence. This study evaluates how drought duration affects microbial biofilm dynamics in the hyporheic zone of intermittent temperate streams. To do so, we used outdoor hyporheic flumes that were subject to periods of drought ranging from 4 to 105 days. Sediment was sampled before and during the drought, and at several occasions after rewetting. Samples were analyzed for extracellular enzymatic activity, bacterial respiration, and bacterial abundances including live to dead cell ratios. The high moisture content remaining in the hyporheic zone of the flumes allowed for the sustained microbial functioning during drought, regardless of drought duration. This can be attributed to cooler temperatures in these climate zones and shading by riparian forests. The high moisture content inhibited the local habitat and community changes that the biofilm might have undergone during more severe desiccation. However, the change in the hyporheic flow regime (flow cessation and resumption) may stimulate microbial processing in these moderate drought conditions. We suggest that the hyporheic zone may act as a buffer against drought and the factors determining this buffer capacity, such as sediment characteristics and climatic regions, need to be analyzed in more detail in future.


2021 ◽  
Author(s):  
Jan-Pascal Boos ◽  
Benjamin Gilfedder ◽  
Sven Frei

<p>Rivers and streams are the dominant transport vectors for microplastic (MP) input into marine environments. During transport, complex physicochemical interactions between particles, water and river sediments influence particle mobility and retention. The specific transport mechanisms of MP in fluvial systems are not yet fully understood, and the main reason lies in the limitation in reliable data derived from experimental analysis.</p><p>In our subproject of the ‘CRC 1357 Microplastics’, we investigate the hydrodynamic mechanisms that control the transport and retention behavior of MP in open channel flows and streambed sediments. In an experimental flume environment, we create realistic hydrodynamic and hyporheic flow conditions by using various porous media (e.g. glass beads or sand) and bedform structures (e.g. riffle-pool sequences, ripples and dunes), modelled from real stream systems.</p><p>The method developed here can quantitatively analyze the transport of pore-scale particles (1-40 µm) based on fluorometric techniques. Particle velocity distributions and particle transport are measured using Particle-Image-Velocimetry and Laser-Doppler-Velocimetry. With our setup, we can quantitatively investigate time-resolved MP transport and retention through the aqueous and solid phase in a flume scale experiment.</p>


2021 ◽  
Author(s):  
Shivansh Shrivastava ◽  
Michael Stewardson ◽  
Meenakshi Arora

<p>In-stream faunal organisms constantly interact with their habitat to modify its physical and hydraulic properties. However, little is known about how sediment-organism interactions could modify the hyporheic exchange. Previous experimental work investigating the effects of the activities of faunal organisms on exchange across the sediment-water interface has been largely conducted in small mesocosms or infiltration columns that do not represent the lotic environment adequately. Therefore, the experimental findings from these studies may not be transferable to flowing water environments (e.g., streams). Our previous experimental work demonstrated that sediment reworking by macroinvertebrates could significantly alter the hyporheic flux, mean residence times, and depth of exchange in streambeds. In this work, we explore how sediment-organism contact time influence the effect of the activities of model organisms, Lumbriculus variegatus, on the hyporheic flow regime. We conduct laboratory experiments in re-circulating flumes subject to different sediment reworking times (5 and 10 days). The hyporheic flow characteristics in these flumes were studied by conducting dye tracer tests after the bed sediments were reworked. Deposition of fecal pellets and holes/burrows dug by sample organisms were visible at the bed surface in both the experimental flumes. The flume reworked for a longer time exhibited higher hyporheic flux, longer median/mean residence times, and deeper depth of solute penetration compared to the flume reworked for a shorter period. The modification of hyporheic flow regime to different degrees depending on the sediment reworking times has direct relevance to the biogeochemistry in hyporheic zones, and thus on the overall quality of surface and sub-surface waters. We advocate that more intensive laboratory experiments and field investigations must be conducted to support the findings from our study and advance our understanding of the role of the activities of faunal organisms on fluvial ecosystem functioning.</p>


2021 ◽  
Vol 80 (6) ◽  
Author(s):  
Andrea Betterle ◽  
Anna Jaeger ◽  
Malte Posselt ◽  
Claudia Coll ◽  
Jonathan P. Benskin ◽  
...  

AbstractHyporheic exchange (HE) contributes to the biogeochemical turnover of macro- and micro-pollutants in rivers. However, the spatiotemporal complexity and variability of HE hinder understanding of its role in the overall functioning of riverine ecosystems. The present study focuses on investigating the role of bacterial diversity and sediment morphology on HE using a multi-flume experiment. A fully coupled surface–subsurface numerical model was used to highlight complex exchange patterns between surface water and the underlying flow field in the sediments. Under the experimental conditions, the surface water flow induced by bedforms has a prominent effect on both local trajectories and residence time distributions of hyporheic flow paths, whereas mean hyporheic retention times are mainly modulated by average surface flowrates. In case of complex bedform morphologies, the numerical model successfully reproduces the HE estimated by means of salt dilution tests. However, the 2D numerical representation of the system falls short in predicting HE in absence of bedforms, highlighting the intrinsic complexity of water circulation patterns in real scenarios. Finally, results show that higher bacterial diversities in the stream sediments can significantly reduce hyporheic fluxes. This work provides a framework to interpret micropollutants turnover in light of the underlying physical transport processes in the hyporheic zone. The study emphasizes the importance of better understanding the tradeoff between physically driven transport processes and bacterial dynamics in the hyporheic zone to quantify the fate of pollutants in streams and rivers.


2020 ◽  
Vol 28 (8) ◽  
pp. 2697-2712
Author(s):  
Robert Earon ◽  
Joakim Riml ◽  
Liwen Wu ◽  
Bo Olofsson

AbstractInteraction between surface water and groundwater plays a fundamental role in influencing aquatic chemistry, where hyporheic exchange processes, distribution of flow paths and residence times within the hyporheic zone will influence the transport of mass and energy in the surface-water/groundwater system. Geomorphological conditions greatly influence hyporheic exchange, and heterogeneities such as rocks and clay lenses will be a key factor for delineating the hyporheic zone. Electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) were used to investigate the streambed along a 6.3-m-long reach in order to characterise geological layering and distinct features which may influence parameters such as hydraulic conductivity. Time-lapse ERT measurements taken during a tracer injection demonstrated that geological features at the meter-scale played a determining role for the hyporheic flow field. The penetration depth of the tracer into the streambed sediment displayed a variable spatial pattern in areas where the presence of highly resistive anomalies was detected. In areas with more homogeneous sediments, the penetration depth was much more uniformly distributed than observed in more heterogeneous sections, demonstrating that ERT can play a vital role in identifying critical hydraulic features that may influence hyporheic exchange processes. Reciprocal ERT measurements linked variability and thus uncertainty in the modelled resistivity to the spatial locations, which also demonstrated larger variability in the tracer penetration depth, likely due to local heterogeneity in the hydraulic conductivity field.


Sign in / Sign up

Export Citation Format

Share Document