scholarly journals CANCER PANOMICS: COMPUTATIONAL METHODS AND INFRASTRUCTURE FOR INTEGRATIVE ANALYSIS OF CANCER HIGH-THROUGHPUT “OMICS” DATA- SESSION INTRODUCTION

2013 ◽  
Author(s):  
SØREN BRUNAK ◽  
FRANCISCO M. DE LA VEGA ◽  
GUNNAR RÄTSCH ◽  
JOSHUA M. STUART
2014 ◽  
Author(s):  
SØREN BRUNAK ◽  
FRANCISCO M. DE LA VEGA ◽  
ADAM MARGOLIN ◽  
BENJAMIN J. RAPHAEL ◽  
GUNNAR RÄTSCH ◽  
...  

2017 ◽  
Author(s):  
Belinda Slakman ◽  
Richard West

<div> <div> <div> <p>This article reviews prior work studying reaction kinetics in solution, with the goal of using this information to improve detailed kinetic modeling in the solvent phase. Both experimental and computational methods for calculating reaction rates in liquids are reviewed. Previous studies, which used such methods to determine solvent effects, are then analyzed based on reaction family. Many of these studies correlate kinetic solvent effect with one or more solvent parameters or properties of reacting species, but it is not always possible, and investigations are usually done on too few reactions and solvents to truly generalize. From these studies, we present suggestions on how best to use data to generalize solvent effects for many different reaction types in a high throughput manner. </p> </div> </div> </div>


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Erica Ponzi ◽  
Magne Thoresen ◽  
Therese Haugdahl Nøst ◽  
Kajsa Møllersen

Abstract Background Cancer genomic studies often include data collected from several omics platforms. Each omics data source contributes to the understanding of the underlying biological process via source specific (“individual”) patterns of variability. At the same time, statistical associations and potential interactions among the different data sources can reveal signals from common biological processes that might not be identified by single source analyses. These common patterns of variability are referred to as “shared” or “joint”. In this work, we show how the use of joint and individual components can lead to better predictive models, and to a deeper understanding of the biological process at hand. We identify joint and individual contributions of DNA methylation, miRNA and mRNA expression collected from blood samples in a lung cancer case–control study nested within the Norwegian Women and Cancer (NOWAC) cohort study, and we use such components to build prediction models for case–control and metastatic status. To assess the quality of predictions, we compare models based on simultaneous, integrative analysis of multi-source omics data to a standard non-integrative analysis of each single omics dataset, and to penalized regression models. Additionally, we apply the proposed approach to a breast cancer dataset from The Cancer Genome Atlas. Results Our results show how an integrative analysis that preserves both components of variation is more appropriate than standard multi-omics analyses that are not based on such a distinction. Both joint and individual components are shown to contribute to a better quality of model predictions, and facilitate the interpretation of the underlying biological processes in lung cancer development. Conclusions In the presence of multiple omics data sources, we recommend the use of data integration techniques that preserve the joint and individual components across the omics sources. We show how the inclusion of such components increases the quality of model predictions of clinical outcomes.


2014 ◽  
Vol 15 (1) ◽  
pp. 280 ◽  
Author(s):  
Huihuang Yan ◽  
Jared Evans ◽  
Mike Kalmbach ◽  
Raymond Moore ◽  
Sumit Middha ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Kalpana Raja ◽  
Matthew Patrick ◽  
Yilin Gao ◽  
Desmond Madu ◽  
Yuyang Yang ◽  
...  

In the past decade, the volume of “omics” data generated by the different high-throughput technologies has expanded exponentially. The managing, storing, and analyzing of this big data have been a great challenge for the researchers, especially when moving towards the goal of generating testable data-driven hypotheses, which has been the promise of the high-throughput experimental techniques. Different bioinformatics approaches have been developed to streamline the downstream analyzes by providing independent information to interpret and provide biological inference. Text mining (also known as literature mining) is one of the commonly used approaches for automated generation of biological knowledge from the huge number of published articles. In this review paper, we discuss the recent advancement in approaches that integrate results from omics data and information generated from text mining approaches to uncover novel biomedical information.


Sign in / Sign up

Export Citation Format

Share Document