NONLINEAR DYNAMICS MODELING AND BACKLASH COMPENSATING OF MULTI-STAGE GEAR TRANSMISSION SYSTEM

Author(s):  
Guo-Wei Pan ◽  
Wen-Liang Chen ◽  
Li-Ping Ding ◽  
De-Li Zhang
2019 ◽  
Vol 25 (10) ◽  
pp. 1653-1662 ◽  
Author(s):  
Wei Li ◽  
Jingdong Sun ◽  
Jiapeng Yu

The two-parallel shaft gear transmission system is the most widely used system among the multi-stage gear transmission systems. The dynamic characteristics analysis of the two-parallel shaft gear transmission system is of great significance for nonlinear behavior research and noise control of gear transmission systems. This paper establishes a dynamic model and equations for the two-parallel shaft gear transmission system. According to the solution to the dynamic equations, the effects are studied of parameters such as speed, damping, modulus, and precision on the dynamic characteristics of the system. The results provide the basis for reducing vibration and noise control in multi-stage gear transmission systems.


2018 ◽  
Vol 28 (03) ◽  
pp. 1850034 ◽  
Author(s):  
Ling Xiang ◽  
Yue Zhang ◽  
Nan Gao ◽  
Aijun Hu ◽  
Jingtang Xing

The nonlinear torsional model of a multistage gear transmission system which consists of a planetary gear and two parallel gear stages is established with time-varying meshing stiffness, comprehensive gear error and multi-clearance. The nonlinear dynamic responses are analyzed by applying the reference of backlash bifurcation parameters. The motions of the system on the change of backlash are identified through global bifurcation diagram, largest Lyapunov exponent (LLE), FFT spectra, Poincaré maps, the phase diagrams and time series. The numerical results demonstrate that the system exhibits rich features of nonlinear dynamics such as the periodic motion, nonperiodic states and chaotic states. It is found that the sun-planet backlash has more complex effect on the system than the ring-planet backlash. The motions of the system with backlash of parallel gear are diverse including some different multi-periodic motions. Furthermore, the state of the system can change from chaos into quasi-periodic behavior, which means that the dynamic behavior of the system is composed of more stable components with the increase of the backlash. Correspondingly, the parameters of the system should be designed properly and controlled timely for better operation and enhancing the life of the system.


Sign in / Sign up

Export Citation Format

Share Document