Electromechanical dynamic simulation and experiment for multi-stage gear transmission system with planetary gears

2018 ◽  
Vol 22 (S2) ◽  
pp. 3031-3041 ◽  
Author(s):  
Yong Wang ◽  
Changzhao Liu ◽  
Yinghua Liao
2012 ◽  
Vol 215-216 ◽  
pp. 974-977 ◽  
Author(s):  
Li Ming Lian ◽  
Gui Min Liu

The dynamic performance of asymmetric involute gear transmission system is analyzed by the MSC.ADAMS software during the paper. By comparative analyzed with the traditional dynamic characteristics of symmetrical involute straight gear transmission, it can be summarized that the asymmetric involute gear transmission system has better vibration characteristics in the course of transmission.


2019 ◽  
Vol 25 (10) ◽  
pp. 1653-1662 ◽  
Author(s):  
Wei Li ◽  
Jingdong Sun ◽  
Jiapeng Yu

The two-parallel shaft gear transmission system is the most widely used system among the multi-stage gear transmission systems. The dynamic characteristics analysis of the two-parallel shaft gear transmission system is of great significance for nonlinear behavior research and noise control of gear transmission systems. This paper establishes a dynamic model and equations for the two-parallel shaft gear transmission system. According to the solution to the dynamic equations, the effects are studied of parameters such as speed, damping, modulus, and precision on the dynamic characteristics of the system. The results provide the basis for reducing vibration and noise control in multi-stage gear transmission systems.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110356
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Renzhen Chen

According to the working characteristics of a 1.5 MW wind turbine planetary gear system under complex and random wind load, a two-parameter Weibull distribution model is used to describe the distribution of random wind speed, and the time-varying load caused by random wind speed is obtained. The nonlinear dynamic model of planetary gear transmission system is established by using the lumped parameter method, and the relative relations among various components are derived by using Lagrange method. Then, the relative relationship between the components is solved by Runge Kutta method. Considering the influence of random load and stiffness ratio on the planetary gear transmission system, the nonlinear dynamic response of cyclic load and random wind load on the transmission system is analyzed. The analysis results show that the variation of the stiffness ratio makes the planetary gear have abundant nonlinear dynamics behavior and the planetary gear can get rid of chaos and enter into stable periodic motion by changing the stiffness ratio properly on the premise of ensuring transmission efficiency. For the variable pitch wind turbine, the random change of external load increases the instability of the system.


2011 ◽  
Vol 65 ◽  
pp. 177-181
Author(s):  
Jia Hong Zheng ◽  
Min Li

The inherent characteristics of the wind generators growth gearbox were solved, then the reasons which caused the gear transmission system generating dynamic incentive was analyzed, and also internal incentive and external incentive were given to 2MW wind generators gear transmission system quantitatively. On the basis of these, 2MW wind generators growth gearbox system’s vibration response caused under internal incentive and external incentive was solved and analyzed.


Sign in / Sign up

Export Citation Format

Share Document