scholarly journals NON-RELATIVISTIC LIMIT OF A DIRAC–MAXWELL OPERATOR IN RELATIVISTIC QUANTUM ELECTRODYNAMICS

2003 ◽  
Vol 15 (03) ◽  
pp. 245-270 ◽  
Author(s):  
ASAO ARAI

The non-relativistic (scaling) limit of a particle-field Hamiltonian H, called a Dirac–Maxwell operator, in relativistic quantum electrodynamics is considered. It is proven that the non-relativistic limit of H yields a self-adjoint extension of the Pauli–Fierz Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics. This is done by establishing in an abstract framework a general limit theorem on a family of self-adjoint operators partially formed out of strongly anticommuting self-adjoint operators and then by applying it to H.

2010 ◽  
Vol 25 (09) ◽  
pp. 1785-1818 ◽  
Author(s):  
ERASMO RECAMI ◽  
VLADISLAV S. OLKHOVSKY ◽  
SERGEI P. MAYDANYUK

The aim of this paper is to show the possible significance, and usefulness, of various non-self-adjoint operators for suitable Observables in nonrelativistic and relativistic quantum mechanics, and in quantum electrodynamics. More specifically, this work deals with: (i) the maximal Hermitian (but not self-adjoint) time operator in nonrelativistic quantum mechanics and in quantum electrodynamics; (ii) the problem of the four-position and four-momentum operators, each one with its Hermitian and anti-Hermitian parts, for relativistic spin-zero particles. Afterwards, other physically important applications of non-self-adjoint (and even non-Hermitian) operators are discussed: in particular, (iii) we reanalyze in detail the interesting possibility of associating quasi-Hermitian Hamiltonians with (decaying) unstable states in nuclear physics. Finally, we briefly mention the cases of quantum dissipation, as well as of the nuclear optical potential.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Qiang Chen ◽  
Jianyuan Xiao ◽  
Peifeng Fan

Abstract A class of high-order canonical symplectic structure-preserving geometric algorithms are developed for high-quality simulations of the quantized Dirac-Maxwell theory based strong-field quantum electrodynamics (SFQED) and relativistic quantum plasmas (RQP) phenomena. With minimal coupling, the Lagrangian density of an interacting bispinor-gauge fields theory is constructed in a conjugate real fields form. The canonical symplectic form and canonical equations of this field theory are obtained by the general Hamilton’s principle on cotangent bundle. Based on discrete exterior calculus, the gauge field components are discreted to form a cochain complex, and the bispinor components are naturally discreted on a staggered dual lattice as combinations of differential forms. With pull-back and push-forward gauge covariant derivatives, the discrete action is gauge invariant. A well-defined discrete canonical Poisson bracket generates a semi-discrete lattice canonical field theory (LCFT), which admits the canonical symplectic form, unitary property, gauge symmetry and discrete Poincaré subgroup, which are good approximations of the original continuous geometric structures. The Hamiltonian splitting method, Cayley transformation and symmetric composition technique are introduced to construct a class of high-order numerical schemes for the semi-discrete LCFT. These schemes involve two degenerate fermion flavors and are locally unconditional stable, which also preserve the geometric structures. Admitting Nielsen-Ninomiya theorem, the continuous chiral symmetry is partially broken on the lattice. As an extension, a pair of discrete chiral operators are introduced to reconstruct the lattice chirality. Equipped with statistically quantization-equivalent ensemble models of the Dirac vacuum and non-trivial plasma backgrounds, the schemes are expected to have excellent performance in secular simulations of relativistic quantum effects, where the numerical errors of conserved quantities are well bounded by very small values without coherent accumulation. The algorithms are verified in detail by numerical energy spectra. Real-time LCFT simulations are successfully implemented for the nonlinear Schwinger mechanism induced e-e+ pairs creation and vacuum Kerr effect, where the nonlinear and non-perturbative features captured by the solutions provide a complete strong-field physical picture in a very wide range, which open a new door toward high-quality simulations in SFQED and RQP fields.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Syeda Noureen

Abstract On employing linearized Vlasov–Maxwell equations the solution of relativistic electromagnetic extraordinary mode is investigated for the wave propagating perpendicular to a uniform ambient magnetic field (in the presence of arbitrary magnetic field limit i.e., ω > Ω > k.v) in partially degenerate (i.e., for T F ≥ T and T ≠ 0) electron plasma under long wavelength limit (ω ≫ k.v). Due to the inclusion of weak quantum degeneracy the relativistic Fermi–Dirac distribution function is expanded under the relativistic limit ( m 0 2 c 2 2 p 2 < 1 $\frac{{m}_{0}^{2}{c}^{2}}{2{p}^{2}}{< }1$ ) to perform momentum integrations which generate the Polylog functions. The propagation characteristics and shifting of cutoff points of the extraordinary mode are examined in different relativistic density and magnetic field ranges. The novel graphical results of extraordinary mode in relativistic quantum partially degenerate (for μ T = 0 $\frac{\mu }{T}=0$ ), nondegenerate (for μ T ≈ − 1 $\frac{\mu }{T}\approx -1$ ) and fully/completely degenerate (for μ T ≈ $\frac{\mu }{T}\approx $ 1) environments are obtained and the previously reported results are retraced as well.


1969 ◽  
Vol 6 (2) ◽  
pp. 419-429 ◽  
Author(s):  
C.C. Heyde

Let Xi, i = 1, 2, 3, … be a sequence of independent and identically distributed random variables which belong to the domain of attraction of a stable law of index a. Write S0= 0, Sn = Σ i=1nXi, n ≧ 1, and Mn = max0 ≦ k ≦ nSk. In the case where the Xi are such that Σ1∞n−1Pr(Sn > 0) < ∞, we have limn→∞Mn = M which is finite with probability one, while in the case where Σ1∞n−1Pr(Sn < 0) < ∞, a limit theorem for Mn has been obtained by Heyde [9]. The techniques used in [9], however, break down in the case Σ1∞n−1Pr(Sn < 0) < ∞, Σ1∞n−1Pr(Sn > 0) < ∞ (the case of oscillation of the random walk generated by the Sn) and the only results available deal with the case α = 2 (Erdos and Kac [5]) and the case where the Xi themselves have a symmetric stable distribution (Darling [4]). In this paper we obtain a general limit theorem for Mn in the case of oscillation.


It is shown how the conventional Lagrangian of non-relativistic electrodynamics leads to a theory in the Lorentz gauge where the scalar potential is treated on an equal footing with the transverse and longitudinal components of the vector potential. This requires the introduction of an indefinite metric as in the Gupta-Bleuler method. Calculations based on this approach with the use of ordinary perturbation theory for the free-space Lamb-shift of hydrogen are shown to exhibit remarkable exact cancellations between parts of the contribution arising from the scalar field and the entire contribution from the longitudinal field to order e 2 , and the result is in agreement with Bethe’s expression where only transverse photons are involved. The non-relativistic theory in the Lorentz gauge is also used to compute the order- e 2 potential on a charged particle outside a conductor where again similar exact cancellations are exhibited. The advantage of the formalism in the Lorentz gauge is emphasized in that it provides an unambiguous procedure for the evaluation of the leading Coulomb energy shifts particularly in the interaction of particles with the surfaces of active media where the Coulomb gauge may be problematical.


Sign in / Sign up

Export Citation Format

Share Document