scattering matrix elements
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 10 (3) ◽  
pp. 24-30
Author(s):  
S. Piltyay ◽  
A. Bulashenko ◽  
V. Shuliak ◽  
O. Bulashenko

In this article we present the results of mathematical simulation, development and optimization of a waveguide polarizer with a diaphragm and pins. A mathematical model was developed using the proposed approach on the example of a waveguide polarizer with one diaphragm and two pins. The diaphragm and pins were modeled as inductive or capacitive elements for two types of linear polarization of the fundamental modes. The applied model uses a wave scattering matrix. The total matrix of a polarizer was obtained using wave matrices of transmission of individual elements of the device structure. Using the elements of the common S-parameters the electromagnetic characteristics of the device, which is considered, were obtained. To check the performance of the developed mathematical model, it was simulated in a software using the finite element technique in the frequency domain. The designed structure of the polarizer is adjustable due to mechanical change in the length of the pins. The developed waveguide polarizer with one diaphragm and two pins provides a reflection coefficient of less than 0.36 and a transmission coefficient of more than 0.93 for two types of polarizations. Therefore, a new theoretical method was developed in the article for analysis of scattering matrix elements of a waveguide polarizer with diaphragms and pins. It can also be used for the development of new tunable waveguide polarizers, filters and other components with diaphragms and pins.


2021 ◽  
Author(s):  
Danaël Cholleton ◽  
Émilie Bialic ◽  
Antoine Dumas ◽  
Pascal Kaluzny ◽  
Patrick Rairoux ◽  
...  

Abstract. Pollens are nowadays recognized as one of the main atmospheric particles affecting public human health as well as the Earth's climate. In this context, an important issue concerns our ability to detect and differentiate among the existing pollen taxa. In this paper, the potential differences that may exist in light scattering by four of the most common pollen taxa, namely ragweed, birch, pine and ash, are analysed in the framework of the scattering matrix formalism at two wavelengths simultaneously (532 and 1064 nm). Interestingly, our laboratory experimental error bars are precise enough to show that these four pollens, when embedded in ambient air, exhibit different spectral and polarimetric light scattering characteristics, in the form of ten scattering matrix elements (five per wavelength), which allow identifying each separately. To end with, a simpler light scattering criterion is proposed for classifying among the four considered pollens by performing a principal component (PC) analysis, that still accounts for more than 99 % of the observed variance. We thus believe this work may open new insights for future atmospheric pollen detection.


2021 ◽  
Author(s):  
Melvin Ikwubuo ◽  
Jinkwan Song ◽  
Jong Guen Lee

Abstract Combustion dynamics has been a significant problem for a lean, premixed, prevaporized (LPP) combustor. Understanding the acoustic characteristics of combustor components is essential to modeling thermoacoustic behavior in a gas turbine combustion system. Acoustic characteristics such as impedance and scattering matrix elements are experimentally determined for different-shape orifices with an emphasis on the effect of the flow field on them. These orifices are used to represent premixed swirl cups in LP combustors. The validity and limitation of two different methodologies are evaluated by comparing measured results with those of others. Consistent with analytical predictions, the measured resistance through an orifice increases as the bias flow increases. Different types of orifices considered in this study behave similarly to a thin orifice at high bias flow even though the discharge coefficients vary as much as 30% between them. The conventional method produces impedance values independent of waves reflected from the end boundary condition only when the scattering elements at the orifice downstream are roughly equal to those upstream of the orifice. However, the scattering matrix method produces impedance values that are not affected by the source or reflected waves at the system’s boundary. The scattering matrix measurements show that the reflection and transmission elements increases and decreases, respectively, as the bias flow through an orifice increases.


2020 ◽  
Vol 8 (5) ◽  
pp. 371
Author(s):  
Evgeniy E. Gorodnichev ◽  
Kirill A. Kondratiev ◽  
Alexandr I. Kuzovlev ◽  
Dmitrii B. Rogozkin

We present the results of a theoretical study of underwater pulse propagation. The vector radiative transfer equation (VRTE) underlies our calculations of the main characteristics of the scattered light field in the pulse. Under the assumption of highly forward scattering in seawater, three separate equations for the basic modes are derived from the exact VRTE. These three equations are further solved both within the small-angle approximation and numerically. The equation for the intensity is analyzed for a power-law parametrization of the wings of the sea water phase function. The distribution of early arrival photons in the pulse, including the peak intensity, is calculated. Simple relations are also presented for the variance of the angular distribution of radiation, the effective duration of the signal and other parameters of the pulse. For linearly and circularly polarized pulses, the temporal profile of the degree of polarization is calculated for actual data on the scattering matrix elements. The degree of polarization is shown to be described by the self-similar dependence on some combination of the transport scattering coefficient, the temporal delay and the source-receiver distance. Our results are in agreement with experimental and Monte-Carlo simulation data. The conclusions of the paper offer a theoretical groundwork for application to underwater imaging, communication and remote sensing.


2020 ◽  
Vol 20 (5) ◽  
pp. 2865-2876 ◽  
Author(s):  
Yifan Huang ◽  
Chao Liu ◽  
Bin Yao ◽  
Yan Yin ◽  
Lei Bi

Abstract. Mineral dust, as one of the most important aerosols, plays a crucial role in the atmosphere by directly interacting with radiation, while there are significant uncertainties in determining dust optical properties to quantify radiative effects and to retrieve their properties. Laboratory and in situ measurements of the refractive indices (RIs) of dust differ, and different RIs have been applied in numerical studies used for model developments, aerosol retrievals, and radiative forcing simulations. This study reveals the importance of the dust RI for the development of a model of dust optical properties. The Koch-fractal polyhedron is used as the modeled geometry, and the pseudospectral time domain method and improved geometric-optics method are combined for optical property simulations over the complete size range. We find that the scattering matrix elements of different kinds of dust particles are reasonably reproduced by choosing appropriate RIs, even when using a fixed particle geometry. The uncertainty of the RI would greatly affect the determination of the geometric model, as a change in the RI, even in the widely accepted RI range, strongly affects the shape parameters used to reproduce the measured dust scattering matrix elements. A further comparison shows that the RI influences the scattering matrix elements in a different way than geometric factors, and, more specifically, the P11, P12, and P22 elements seem more sensitive to the RI of dust. In summary, more efforts should be devoted to account for the uncertainties on the dust RI in modeling its optical properties, and the development of corresponding optical models can potentially be simplified by considering only variations over different RIs. Considerably more research, especially from direct measurements, should be carried out to better constrain the uncertainties related to the dust aerosol RIs.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 114 ◽  
Author(s):  
Merhala Thurai ◽  
Sophie Steger ◽  
Franz Teschl ◽  
Michael Schönhuber

Tropical storm Nate, which was a powerful hurricane prior to landfall along the US Gulf coast, traversed north and weakened considerably to a tropical depression as it moved near an instrumented site in Hunstville, AL. The outer rain bands lasted 18 h (03:00 to 21:00 UTC on 08 October 2017) and a 2D-video disdrometer (2DVD) captured the event which was shallow at times and indicative of pure warm rain processes. The 2DVD measurements are used for 3D reconstruction of drop shapes (including the rotationally asymmetric drops) and the drop-by-drop scattering matrix has been computed using Computer Simulation Technology integral equation solver for drop sizes >2.5 mm. From the scattering matrix elements, the polarimetric radar observables are simulated by integrating over 1 min consecutive segments of the event. These simulated values are compared with dual-polarized C-band radar data located at 15 km range from the 2DVD site to evaluate the contribution of the asymmetric drop shapes, specifically to differential reflectivity. The drop fall velocities and drop horizontal velocities in terms of magnitude and direction, all being derived from each drop image from two orthogonal cameras of the 2DVD, are also considered.


2019 ◽  
Author(s):  
Yifan Huang ◽  
Chao Liu ◽  
Yan Yin ◽  
Lei Bi

Abstract. Dust, as one of the most important aerosols, plays a crucial role in the atmosphere by directly scattering and absorbing solar and infrared radiation, while there are significant uncertainties in determining dust optical properties to quantify radiative effects and to retrieve their properties. Both laboratory and in situ measurements show variations in dust refractive indices (RIs), and different RIs have been applied in different numerical studies of model developments, aerosol retrievals, and radiative forcing simulations. This study reveals the importance of the dust RI for the model development of its optical properties. The Koch-fractal polyhedron is used as the modeled geometry, and the pseudo-spectral time domain method and improved geometric-optics method are combined to cover optical property simulations over the entire size range. Our results indicate that the scattering matrix elements of different kinds of dust particles can be reasonably reproduced by choosing appropriate RIs even using a fixed particle geometry. The uncertainty of the RI would greatly affect the determination of the geometric model, as a change in the RI, even in the widely accepted RI range, strongly affects the appropriate shape parameters to reproduce the measured dust phase matrix elements. A further comparison shows that the RI influences the scattering matrix elements differently from geometric factors, and, more specifically, the P11, P12, and P22 elements seem more sensitive to dust RI. In summary, more efforts should be devoted to account for the uncertainties on the dust RI in modeling its optical properties, and the development of corresponding optical models can potentially be simplified by considering only variations over different RIs. Considerably more research, especially from direct measurements, should be carried out to better constrain the uncertainties related to the dust aerosol RIs.


Author(s):  
Merhala Thurai ◽  
Sophie Steger ◽  
Franz Teschl ◽  
Michael Schoenhuber

Tropical storm Nate, which was a powerful hurricane prior to landfall along the Alabama coast, traversed north towards our instrumented site in Hunstville, AL. The rain bands lasted 18 h and the 2D-video disdrometer (2DVD) captured the event which was shallow and indicative of pure warm rain processes. Measurements of raindrop size, shape and velocity distributions are quite rare in pure warm rain and are expected to differ from cold rain processes. In particular, asymmetric shapes due to drop oscillations and their impact on polarimetric radar signatures in warm rain have not been studied so far. Recently, the 2DVD data has been used for 3D reconstruction of asymmetric raindrop shapes but their fraction (relative to the more common oblate shapes) in warm rain has yet to be ascertained. Here we compute the scattering matrix drop-by-drop using Computer Simulation Technology integral equation solver for drop sizes>2.5 mm. From the scattering matrix elements, the polarimetric radar observables are simulated by integrating over 1 minute consecutive segments of the event. These simulated values are compared with dual-polarized C-band radar data located at 15 km range from the 2DVD site to evaluate the contribution of the asymmetric drop shapes.


2019 ◽  
Vol 13 (4) ◽  
pp. 383-389
Author(s):  
Y. Ahmadi ◽  
M. V. Takook

Abstract The interaction between three photons is studied in de Sitter ambient space formalism. As a special case, the half harmonic generator is considered, i.e., one photon decays to two same-energy photons. The scattering matrix elements are presented which define the indirect gravitational effect on quantum field theory. The null curvature limit of scattering matrix is obtained for comparing it with its Minkowskian counterpart. The Hamiltonian of this interaction, in Minkowski space–time, was presented by using the quantum vacuum fluctuation in the one-loop approximation.


Sign in / Sign up

Export Citation Format

Share Document