scholarly journals APPLICATIONS OF MAGNETIC ΨDO TECHNIQUES TO SAPT

2011 ◽  
Vol 23 (03) ◽  
pp. 233-260 ◽  
Author(s):  
GIUSEPPE DE NITTIS ◽  
MAX LEIN

In this review, we show how advances in the theory of magnetic pseudodifferential operators (magnetic ΨDO) can be put to good use in space-adiabatic perturbation theory (SAPT). As a particular example, we extend results of [24] to a more general class of magnetic fields: we consider a single particle moving in a periodic potential which is subjected to a weak and slowly-varying electromagnetic field. In addition to the semiclassical parameter ε ≪ 1 which quantifies the separation of spatial scales, we explore the influence of an additional parameter λ that allows us to selectively switch off the magnetic field. We find that even in the case of magnetic fields with components in [Formula: see text], e.g., for constant magnetic fields, the results of Panati, Spohn and Teufel hold, i.e to each isolated family of Bloch bands, there exists an associated almost invariant subspace of L2(ℝd) and an effective hamiltonian which generates the dynamics within this almost invariant subspace. In case of an isolated non-degenerate Bloch band, the full quantum dynamics can be approximated by the hamiltonian flow associated to the semiclassical equations of motion found in [24].

2019 ◽  
Vol 204 ◽  
pp. 10008
Author(s):  
Alexander J. Silenko ◽  
Pengming Zhang ◽  
Liping Zou

Relativistic classical and quantum dynamics of twisted (vortex) Dirac particles in arbitrary electric and magnetic fields is constructed. The relativistic Hamiltonian and equations of motion in the Foldy-Wouthuysen representation are derived. Methods for the extraction of an electron vortex beam with a given orbital polarization and for the manipulation of such a beam are developed. The new effect of a radiative orbital polarization of a twisted electron beam in a magnetic field resulting in a nonzero average projection of the intrinsic orbital angular momentum on the field direction is predicted.


2007 ◽  
Vol 22 (08n09) ◽  
pp. 1717-1726
Author(s):  
K. MAHARANA

We use group theoretic methods to obtain the extended Lie point symmetries of the quantum dynamics of a scalar particle probing the near horizon structure of a black hole. Symmetries of the classical equations of motion for a charged particle in the field of an inverse square potential and a monopole, in the presence of certain model magnetic fields and potentials are also studied. Our analysis gives the generators and Lie algebras generating the inherent symmetries.


2018 ◽  
Vol 14 (A30) ◽  
pp. 101-101
Author(s):  
Juan D. Soler

AbstractThis review examines observations of magnetic fields in molecular clouds, that is, at spatial scales ranging from tens to tenths of parsecs and densities up to hundreds of particles per cubic centimetre. I will briefly summarize the techniques for observing and mapping magnetic fields in molecular clouds. I will review important examples of observational results obtained using each technique and their implications for our understanding of the role of the magnetic field in molecular cloud formation and evolution. Finally, I will briefly discuss the prospects for advances in our observational capabilities with telescopes and instruments now beginning operation or under construction.


2012 ◽  
Vol 8 (S294) ◽  
pp. 137-142
Author(s):  
A. V. Getling ◽  
V. V. Kolmychkov ◽  
O. S. Mazhorova

AbstractMagnetoconvection in a horizontal layer of incompressible fluid is simulated numerically. The initial magnetic field is assumed to be uniform and horizontal. The interaction of quasi-ordered cellular convection with the magnetic field is shown to be able to produce bipolar (and also diverse more complex) configurations of a substantially amplified magnetic field. The operation of this mechanism, which can be regarded as a modification of the mechanism suggested by Tverskoi (1966), is controlled by the very topology of the cellular flow, should be manifest on various spatial scales, and does not require strong initial fields. Magnetic configurations develop both in the central parts of convection cells, where circulatory fluid motion “winds” magnetic field lines, and in the network formed by their peripheral regions due to the “sweeping” of magnetic field lines.


2018 ◽  
Vol 14 (A30) ◽  
pp. 111-112
Author(s):  
Daria Dall’Olio ◽  
W. H. T. Vlemmings ◽  
M. V. Persson

AbstractMagnetic fields play a significant role during star formation processes, hindering the fragmentation and the collapse of the parental cloud, and affecting the accretion mechanisms and feedback phenomena. However, several questions still need to be addressed to clarify the importance of magnetic fields at the onset of high-mass star formation, such as how strong they are and at what evolutionary stage and spatial scales their action becomes relevant. Furthermore, the magnetic field parameters are still poorly constrained especially at small scales, i.e. few astronomical units from the central object, where the accretion disc and the base of the outflow are located. Thus we need to probe magnetic fields at different scales, at different evolutionary steps and possibly with different tracers. We show that the magnetic field morphology around high-mass protostars can be successfully traced at different scales by observing maser and dust polarised emission. A confirmation that they are effective tools is indeed provided by our recent results from 6.7 GHz MERLIN observations of the massive protostar IRAS 18089-1732, where we find that the small-scale magnetic field probed by methanol masers is consistent with the large-scale magnetic field probed by dust (Dall’Olio et al. 2017 A&A 607, A111). Moreover we present results obtained from our ALMA Band 7 polarisation observations of G9.62+0.20, which is a massive star-forming region with a sequence of cores at different evolutionary stages (Dall’Olio et al. submitted to A&A). In this region we resolve several protostellar cores embedded in a bright and dusty filamentary structure. The magnetic field morphology and strength in different cores is related to the evolutionary sequence of the star formation process which is occurring across the filament.


2018 ◽  
Vol 618 ◽  
pp. A163 ◽  
Author(s):  
S. Jorquera ◽  
G. H.-M. Bertrang

Context. The role of magnetic fields in the process of star formation is a matter of continuous debate. Clear observational proof of the general influence of magnetic fields on the early phase of cloud collapse is still pending. In an earlier study on Bok globules with simple structures, we find strong indications of dominant magnetic fields across large spatial scales. Aims. The aim of this study is to test the magnetic field influence across Bok globules with more complex density structures. Methods. We apply near-infrared polarimetry to trace the magnetic field structure on scales of 104–105 au (~0.05–0.5pc) in selected Bok globules. The combination of these measurements with archival data in the optical and sub-mm wavelength range allows us to characterize the magnetic field on scales of 103–106 au (~0.005–5pc). Results. We present polarimetric data in the near-infrared wavelength range for the three Bok globules CB34, CB56, and [OMK2002]18, combined with archival polarimetric data in the optical wavelength range for CB34 and CB56, and in the submillimeter wavelength range for CB34 and [OMK2002]18. We find a strong polarization signal (P ≥ 2%) in the near-infrared for all three globules. For CB34, we detect a connection between the structure on scales of 104–105 au (~0.05–0.5pc) to 105–106 au (~0.5–5pc). For CB56, we trace aligned polarization segments in both the near-infrared and optical data, suggesting a connection of the magnetic field structure across the whole globule. In the case of [OMK2002]18, we find ordered polarization structures on scales of 104–105 au (~0.05–0.5pc). Conclusions. We find strongly aligned polarization segments on large scales which indicate dominant magnetic fields across Bok globules with complex density structures. To reconcile our findings in globules, the lowest mass clouds known, and the results on intermediate (e.g. Taurus) and more massive (e.g. Orion) clouds, we postulate a mass-dependent role of magnetic fields, whereby magnetic fields appear to be dominant on low and high mass but rather subdominant on intermediate mass clouds.


2004 ◽  
Vol 13 (08) ◽  
pp. 1549-1594 ◽  
Author(s):  
FEDERICA GOVONI ◽  
LUIGINA FERETTI

The existence of magnetic fields associated with the intracluster medium in clusters of galaxies is now well established through different methods of analysis. Magnetic fields are investigated in the radio band from studies of the rotation measure of polarized radio galaxies and the synchrotron emission of cluster-wide diffuse sources. Other techniques include X-ray studies of the inverse Compton emission and of cold fronts and magneto hydrodynamic simulations. We review the main issues that have led to our knowledge on magnetic fields in clusters of galaxies. Observations show that cluster fields are at the μG level, with values up to tens of μG at the center of cooling core clusters. Estimates obtained from different observational approaches may differ by about an order of magnitude. However, the discrepancy may be alleviated by considering that the magnetic field is not constant throughout the cluster, and shows a complex structure. In particular, the magnetic field intensity declines with the cluster radius with a rough dependence on the thermal gas density. Moreover, cluster magnetic fields are likely to fluctuate over a wide range of spatial scales with values from a few kpc up to hundreds kpc. Important information on the cluster field are obtained by comparing the observational results with the prediction from numerical simulations. The origin of cluster magnetic fields is still debated. They might originate in the early Universe, either before or after the recombination, or they could have been deposited in the intracluster medium by normal galaxies, starburst galaxies, or AGN. In either case, magnetic fields undergo significant amplification during the cluster merger processes.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


Sign in / Sign up

Export Citation Format

Share Document