Dynamic Cell Structures for the Evaluation of Keypoints in Facial Images

1997 ◽  
Vol 08 (01) ◽  
pp. 27-39 ◽  
Author(s):  
R. Herpers ◽  
L. Witta ◽  
J. Bruske ◽  
G. Sommer

In this contribution Dynamic Cell Structures (DCS network) are applied to classify local image structures at particular facial landmarks. The facial landmarks such as the corners of the eyes or intersections of the iris with the eyelid are computed in advance by a combined model and data driven sequential search strategy. To reduce the detection error after the processing of the sequential search strategy, the computed image positions are verified applying a DCS network. The DCS network is trained by supervised learning with feature vectors which encode spatially arranged edge and structural information at the keypoint position considered. The model driven localization as well as the data driven verification are based on steerable filters, which build a representation comparable with one provided by a receptive field in the human visual system. We apply a DCS based classifier because of its ability to grasp the topological structure of complex input spaces and because it has proved successful in a number of other classification tasks. In our experiments the average error resulting from false positive classifications is less than 1%.

Author(s):  
Yusuke Kubo ◽  
◽  
Masao Kubo ◽  
Hiroshi Sato ◽  
Akira Namatame

We propose a method that uses a large number of digital photographs to produce highly accurate estimates of the locations of subjects that have attracted a crowd’s attention. Recently, a very active area of research has been to use humans as sensors in realworld observations that require a large amount of data. Some of these studies have attempted to produce real-time estimates of the subjects that are attracting a crowd’s attention by quickly collecting a large number of photographs. These studies are based on the assumption that, when photographers encounter interesting events, they take pictures. Some of the proposed methods realize high availability by using only photographing information, which includes information about location and azimuth of the camera and it is automatically embedded into photograph. Since this data is very small compared to that of the pixel information, the load on the communication infrastructure is reduced. However, there are problems with the accuracy when there are many attractive subjects in a small region, and they cannot be found with traditional methods that use a sequential search strategy. The proposed method overcomes this problem by applying nonnegative matrix factorization (NMF) to the estimated location of each subject. We verified the effectiveness of this by computational experiments and an experiment under a realistic environment.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2085
Author(s):  
Xue-Bo Jin ◽  
Ruben Jonhson Robert RobertJeremiah ◽  
Ting-Li Su ◽  
Yu-Ting Bai ◽  
Jian-Lei Kong

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.


Sign in / Sign up

Export Citation Format

Share Document