fixed threshold
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 32)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110593
Author(s):  
Lun-Ping Hung ◽  
Nan-Chen Hsieh ◽  
Li-Ju Lin ◽  
Zong-Jie Wu

In the current long-term care environment, there is a shortage of manpower and a high turnover rate of staff. Therefore, residential institutions are eager to build an effective Internet of Things integration mechanism to assist institutions with automatic sensor detection and early warning capabilities. Although Internet of Things facilities have enabled prompt notification and warning of emergency events, the following problems exist when implementing Internet of Things in the facilities: (1) low compatibility between sensors has led to excessive installation costs; (2) warning systems that are based on fixed threshold values and lack of flexibility can cause false or omitted reports that result in the incapability of reflecting real conditions and additional labor costs would be required. This study uses a medical-grade Internet of Things module that can calculate the environmental values with edge computing to generate different levels of alarms by combining the index-weighted moving average method to dynamically calculate the optimal threshold value for the environment. It takes 2 months to collect data from care institutions. The average F1-Score obtained in different environments is between 0.46 and 0.88. The results show that compared with using a fixed threshold, this method can effectively reduce sensor error notifications and missed notifications.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1585
Author(s):  
Carlos A. Prete ◽  
Vítor H. Nascimento ◽  
Cássio G. Lopes

Acoustic emission is a non-destructive testing method where sensors monitor an area of a structure to detect and localize passive sources of elastic waves such as expanding cracks. Passive source localization methods based on times of arrival (TOAs) use TOAs estimated from the noisy signals received by the sensors to estimate the source position. In this work, we derive the probability distribution of TOAs assuming they were obtained by the fixed threshold technique—a popular low-complexity TOA estimation technique—and show that, if the sampling rate is high enough, TOAs can be approximated by a random variable distributed according to a mixture of Gaussian distributions, which reduces to a Gaussian in the low noise regime. The optimal source position estimator is derived assuming the parameters of the mixture are known, in which case its MSE matches the Cramér–Rao lower bound, and an algorithm to estimate the mixture parameters from noisy signals is presented. We also show that the fixed threshold technique produces biased time differences of arrival (TDOAs) and propose a modification of this method to remove the bias. The proposed source position estimator is validated in simulation using biased and unbiased TDOAs, performing better than other TOA-based passive source localization methods in most scenarios.


2021 ◽  
Author(s):  
Chongyang Wang ◽  
Li Wang ◽  
Danni Wang ◽  
Dan Li ◽  
Chenghu Zhou ◽  
...  

Abstract. Recognizing and extracting estuarine turbidity maximum zone (TMZ) efficiently is important for kinds of terrestrial hydrological process. Although many relevant studies of TMZ have been carried out around the world, the method of extracting and criteria of describing TMZ vary greatly from different regions and different times. In order to improve the applicability of the fixed threshold in previous studies and develop a novel model extracting TMZ accurately in multi estuaries and different seasons by remote sensing imagery, this study estimated the total suspended solids (TSS) concentrations and chlorophyll a (Chla) concentrations in Pearl River Estuary (PRE), Hanjiang River Estuary (HRE) and Moyangjiang River Estuary (MRE) of Guangdong province, China. The spatial distribution characteristics of both TSS concentrations and Chla concentrations were analyzed subsequently. It was found that there was an almost opposite relationship between TSS concentration and Chla concentration in the three estuaries, especially in PRE. The regions of high (low) TSS concentrations are exactly corresponding to the relative low (high) Chla concentrations. Based on the special feature, an index named turbidity maximum zone index (TMZI), defining as the ratio of the difference and sum of logarithmic transformation of TSS concentrations and Chla concentrations, was firstly proposed. By calculating the values of TMZI in PRE on 20 November 2004 (low-flow season), it was found that the criterion (TMZI > 0.2) could be used to distinguish TMZs of PRE effectively. Compared with the true (false) color imagery and the rudimentary visual interpretation results, the TMZs extraction results by TMZI were mostly consistent with the actual distribution. Moreover, the same criterion was further applied in PRE on 18 October 2015. The high accuracy and good consistency across seasons were also found. The west shoal of PRE was the main distribution areas of TMZs. In addition, the good performance in extracting TMZs by this newly proposed index were also found in different estuaries and different times (HRE, 13 August 2008, high-flow season; MRE, on 6 December 2013, low-flow season). Compared to the previous fixed threshold (TSS or turbidity) methods, extracting TMZ by TMZI has a higher accuracy and better applicability. Evidently, this unified TMZI is a potentially optimized method to monitor and extract TMZs of other estuaries in the world by different satellite remote sensing imageries, which can be used to improve the understanding of the spatial and temporal variation of TMZs and estuarial processes on regional and global scales, and the management and sustainable development of regional society and nature environment.


Erkenntnis ◽  
2021 ◽  
Author(s):  
Stefano Bonzio ◽  
Gustavo Cevolani ◽  
Tommaso Flaminio

AbstractAccording to the so-called Lockean thesis, a rational agent believes a proposition just in case its probability is sufficiently high, i.e., greater than some suitably fixed threshold. The Preface paradox is usually taken to show that the Lockean thesis is untenable, if one also assumes that rational agents should believe the conjunction of their own beliefs: high probability and rational belief are in a sense incompatible. In this paper, we show that this is not the case in general. More precisely, we consider two methods of computing how probable must each of a series of propositions be in order to rationally believe their conjunction under the Lockean thesis. The price one has to pay for the proposed solutions to the paradox is what we call “quasi-dogmatism”: the view that a rational agent should believe only those propositions which are “nearly certain” in a suitably defined sense.


2021 ◽  
Vol 13 (5) ◽  
pp. 1009
Author(s):  
Yaxiao Niu ◽  
Huihui Zhang ◽  
Wenting Han ◽  
Liyuan Zhang ◽  
Haipeng Chen

Accurate estimation of fractional vegetation cover (FVC) from digital images taken by commercially available cameras is of great significance in order to monitor the vegetation growth status, especially when plants are under water stress. Two classic threshold-based methods, namely, the intersection method (T1 method) and the equal misclassification probability method (T2 method), have been widely applied to Red-Green-Blue (RGB) images. However, the high coverage and severe water stress of crops in the field make it difficult to extract FVC stably and accurately. To solve this problem, this paper proposes a fixed-threshold method based on the statistical analysis of thresholds obtained from the two classic threshold approaches. Firstly, a Gaussian mixture model (GMM), including the distributions of green vegetation and backgrounds, was fitted on four color features: excessive green index, H channel of the Hue-Saturation-Value (HSV) color space, a* channel of the CIE L*a*b* color space, and the brightness-enhanced a* channel (denoted as a*_I). Secondly, thresholds were calculated by applying the T1 and T2 methods to the GMM of each color feature. Thirdly, based on the statistical analysis of the thresholds with better performance between T1 and T2, the fixed-threshold method was proposed. Finally, the fixed-threshold method was applied to the optimal color feature a*_I to estimate FVC, and was compared with the two classic approaches. Results showed that, for some images with high reference FVC, FVC was seriously underestimated by 0.128 and 0.141 when using the T1 and T2 methods, respectively, but this problem was eliminated by the proposed fixed-threshold method. Compared with the T1 and T2 methods, for images taken in plots under severe water stress, the mean absolute error of FVC obtained by the fixed-threshold method was decreased by 0.043 and 0.193, respectively. Overall, the FVC estimation using the proposed fixed-threshold method has the advantages of robustness, accuracy, and high efficiency, with a coefficient of determination (R2) of 0.99 and root mean squared error (RMSE) of 0.02.


2021 ◽  
Author(s):  
Marit Van Tiel ◽  
Anne F. Van Loon ◽  
Jan Seibert ◽  
Kerstin Stahl

Abstract. Warm and dry summer days can lead to low streamflow due to a lack of rainfall and increased evaporation. In glacierized catchments, however, such periods can lead to a very different hydrological response as glaciers can supply an increased amount of meltwater, thereby compensating for the rainfall deficits. Here, we analyzed glacier-fed streamflow responses to warm and dry periods (WD) in long-term streamflow observations (> 50 years). WD events during summer (June–September) were analyzed for catchments with varying glacier cover in Canada, Norway and the European Alps. WD events were defined by days with temperatures above a daily varying threshold, based on the 80th percentile of the respective long-term temperature data for that day in the year, and daily precipitation sums below a fixed threshold (


Author(s):  
Hesam Ahmadi ◽  
Emad Fatemizadeh ◽  
Ali Motie Nasrabadi

Purpose: Graph theory is a widely used and reliable tool to quantify brain connectivity. Brain functional connectivity is modeled as graph edges employing correlation coefficients. The correlation coefficients can be used as the weight that shows the power of connectivity between two nodes or can be binarized to show the existence of a connection regardless of its strength. To binarize the brain graph two approaches, namely fixed threshold and fixed density are often used. Materials and Methods: This paper aims to investigate the difference between weighted or binarized graphs in brain functional connectivity analysis. To achieve this goal, the brain connectivity matrices are generated employing the functional Magnetic Resonance Imaging (fMRI) data of Alzheimer's Disease (AD). After preprocessing the data, weighted and binarized connectivity matrices are constructed using a fixed threshold and fixed density techniques. Graph global features are extracted and a non-parametric statistical test is performed to analyze the performance of the methods. Results: Results show that all three methods are powerful in distinguishing the healthy group from AD subjects. The P-Values of the weighted graph is close to the fixed threshold method. Conclusion: Also, it is worthwhile mentioning that the fixed threshold method is robust in changing the threshold while the fixed density method is very sensitive. On the other hand, graph global measures such as clustering coefficient and transitivity, regardless of the method, show significant differences between the control and AD groups. Furthermore, the P-Values of modularity measure are very varied according to the method and the selected threshold.


Author(s):  
Z. Liu ◽  
K. Wu ◽  
R. Jiang ◽  
H. Zhang

Abstract. Fixed threshold models have been widely used in active fire detection products. However, its accuracy is limited due to the complexity of setting up thresholds. Artificial neural network (ANN) is capable of learning from data and can decide weights automatically. Given enough data, an ANN model is able to optimize itself and quickly find an optimal solution. In this work, a simple ANN model is implemented to classify fire pixels from Landsat-8 data. Experimental results show that our ANN model effectively achieves fire detection and performs better than fixed threshold model in certain circumstances.


2020 ◽  
Vol 13 (3) ◽  
pp. 422-432
Author(s):  
Madan Mohan Agarwal ◽  
Hemraj Saini ◽  
Mahesh Chandra Govil

Background: The performance of the network protocol depends on number of parameters like re-broadcast probability, mobility, the distance between source and destination, hop count, queue length and residual energy, etc. Objective: In this paper, a new energy efficient routing protocol IAOMDV-PF is developed based on the fixed threshold re-broadcast probability determination and best route selection using fuzzy logic from multiple routes. Methods: In the first phase, the proposed protocol determines fixed threshold rebroadcast probability. It is used for discovering multiple paths between the source and the destination. The threshold probability at each node decides the rebroadcasting of received control packets to its neighbors thereby reducing routing overheads and energy consumption. The multiple paths list received from the first phase and supply to the second phase that is the fuzzy controller selects the best path. This fuzzy controller has been named as Fuzzy Best Route Selector (FBRS). FBRS determines the best path based on function of queue length, the distance between nodes and mobility of nodes. Results: Comparative analysis of the proposed protocol named as "Improved Ad-Hoc On-demand Multiple Path Distance Vector based on Probabilistic and Fuzzy logic" (IAOMDV-PF) shows that it is more efficient in terms of overheads and energy consumption. Conclusion: The proposed protocol reduced energy consumption by about 61%, 58% and 30% with respect to FF-AOMDV, IAOMDV-F and FPAOMDV routing protocols, respectively. The proposed protocol has been simulated and analyzed by using NS-2.


Sign in / Sign up

Export Citation Format

Share Document