EVALUATION OF THE UPTAKE OF CDDP-CONTAINING POLYMERIC MICELLES IN SINGLE PANCREATIC CANCER CELLS

2010 ◽  
Vol 20 (01n02) ◽  
pp. 37-43 ◽  
Author(s):  
K. MIZUNO ◽  
M. UESAKA ◽  
S. MATSUYAMA ◽  
Y. ITO ◽  
K. ISHII ◽  
...  

Highly functionalized drugs delivered via a drug delivery system are expected to have less side effects and higher accumulation rates compared to conventional anticancer drugs. An understanding of the kinetics of drugs contained within a delivery system is necessary to obtain the maximum therapeutic effect. We performed micro-elemental analysis of human pancreatic cancer cells treated with cis-diamminedichloroplatinum(II) (CDDP)-containing polymeric micelles. The results showed that the platinum signals were distributed inside the cellular nuclei and the cytoplasm indicating that CDDP was delivered into the cells. The results from this study will be useful for designing an optimum carrier for platinum-containing anticancer drugs.

2015 ◽  
Vol 12 (5) ◽  
pp. 1422-1430 ◽  
Author(s):  
Masaharu Murata ◽  
Sayoko Narahara ◽  
Takahito Kawano ◽  
Nobuhito Hamano ◽  
Jing Shu Piao ◽  
...  

Pancreatology ◽  
2013 ◽  
Vol 13 (3) ◽  
pp. S27
Author(s):  
Daisuke Hashimoto ◽  
Merja Bläuer ◽  
Juhani Sand ◽  
Masahiko Hirota ◽  
Johanna Laukkarinen

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject. Results To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells. Conclusions A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


Oncotarget ◽  
2016 ◽  
Vol 7 (31) ◽  
pp. 50365-50379 ◽  
Author(s):  
Vandhana Muralidharan-Chari ◽  
Hamed Gilzad Kohan ◽  
Alexandros G. Asimakopoulos ◽  
Thangirala Sudha ◽  
Stewart Sell ◽  
...  

2020 ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background: Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject.Results: To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells.Conclusions: A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


2020 ◽  
Author(s):  
Changzhen Sun ◽  
Ji Lu ◽  
Jun Wang ◽  
Ping Hao ◽  
Chunhong Li ◽  
...  

Abstract Background: Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject.Results: To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells.Conclusions: A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2017
Author(s):  
Lital Sharvit ◽  
Rinat Bar-Shalom ◽  
Naiel Azzam ◽  
Yaniv Yechiel ◽  
Solomon Wasser ◽  
...  

Pancreatic cancer is a highly lethal disease with limited options for effective therapy and the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract (CSE) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay (XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document