Design and Function of Engineered Protein Nanocages as a Drug Delivery System for Targeting Pancreatic Cancer Cells via Neuropilin-1

2015 ◽  
Vol 12 (5) ◽  
pp. 1422-1430 ◽  
Author(s):  
Masaharu Murata ◽  
Sayoko Narahara ◽  
Takahito Kawano ◽  
Nobuhito Hamano ◽  
Jing Shu Piao ◽  
...  
2010 ◽  
Vol 20 (01n02) ◽  
pp. 37-43 ◽  
Author(s):  
K. MIZUNO ◽  
M. UESAKA ◽  
S. MATSUYAMA ◽  
Y. ITO ◽  
K. ISHII ◽  
...  

Highly functionalized drugs delivered via a drug delivery system are expected to have less side effects and higher accumulation rates compared to conventional anticancer drugs. An understanding of the kinetics of drugs contained within a delivery system is necessary to obtain the maximum therapeutic effect. We performed micro-elemental analysis of human pancreatic cancer cells treated with cis-diamminedichloroplatinum(II) (CDDP)-containing polymeric micelles. The results showed that the platinum signals were distributed inside the cellular nuclei and the cytoplasm indicating that CDDP was delivered into the cells. The results from this study will be useful for designing an optimum carrier for platinum-containing anticancer drugs.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2656-2663
Author(s):  
Boye Zhang ◽  
Qianqian Duan ◽  
Yi Li ◽  
Jianming Wang ◽  
Wendong Zhang ◽  
...  

The system is pH-responsive and redox-controlled release. And the charge reversal and size transitions of the system can enhance the targeted ability. Moreover, the system can recognize the cancer cells by the fluorescence imaging.


2015 ◽  
Vol 16 (8) ◽  
pp. 2444-2454 ◽  
Author(s):  
Jinxia An ◽  
Xiaomei Dai ◽  
Zhongming Wu ◽  
Yu Zhao ◽  
Zhentan Lu ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (55) ◽  
pp. 31581-31587 ◽  
Author(s):  
Lin Wang ◽  
Xuefeng Shi ◽  
Jian Zhang ◽  
Yuejun Zhu ◽  
Jinben Wang

Supramolecular hydrogel, AGC16/NTS, was used to encapsulate hydrophobic drug curcumin (Cur), constructing a pH-responsive drug delivery system; the uptake of released Cur by cancer cells also occurred.


2020 ◽  
Vol 8 (6) ◽  
pp. 1592-1603
Author(s):  
Zachary Shaw ◽  
Arth Patel ◽  
Thai Butcher ◽  
Tuhina Banerjee ◽  
Ren Bean ◽  
...  

New aliphatic pseudo-branched polyester copolymers are synthesized from diethylmalonate. The formulated nanomedicine successfully encapsulates therapeutic drug in higher dosage and deliver specifically to cancer cells for diagnosis and treatment.


2020 ◽  
Vol 16 (6) ◽  
pp. 867-875
Author(s):  
Junlin Li ◽  
Lingyun Hao ◽  
Xiaojuan Zhang ◽  
Qing Lin ◽  
Dong Liang

Liposome is a traditional drug-delivery system and most novel studies have focused on its drug release function. In this paper, a new drug-delivery system based on liposomes was prepared, which contains hydrophobic FeAg alloy nanoparticles (FeAgNPs) in their lipid bilayer and berberine as test drug in their middle water phase. The size of AgFe-Ls was about 200 nm, the encapsulation efficiency of drugs was 35% and the lower critical solution temperature (LCST) of AgFe-Ls was about 41.96 °C. FeAgNPs in the AgFe-Ls had a 1:1 iron-to-silver atomic ratio with both optical and superparamagnetic properties. The photothermal effect and magnetocaloric effect of FeAgNPs could serve up both photo-stimulated and magnetic- stimulated drug release to liposomes. Release experiments results showed that AgFe-Ls could easily release berberine when stimulated by UV light (45% drug release at 20 min) or alternating current electromagnetic field (AMF) (80% drug release at 4 h). AgFe-Ls with both photo-controlled and magnetic-controlled drug release functions are promising to serve up chemotherapy drugs to cancer cells.


Sign in / Sign up

Export Citation Format

Share Document