RSFQ TECHNOLOGY: PHYSICS AND DEVICES

2001 ◽  
Vol 11 (01) ◽  
pp. 257-305 ◽  
Author(s):  
PAUL BUNYK ◽  
KONSTANTIN LIKHAREV ◽  
DMITRY ZINOVIEV

Rapid Single-Flux-Quantum (RSFQ) logic, based on the representation of digital bits by single quanta of magnetic flux in superconducting loops, may combine several-hundred-GHz speed with extremely low power dissipation (close to 10-18 Joule/bit) and very simple fabrication technology. The drawbacks of this technology include the necessity of deep (liquid-helium-level) cooling of RSFQ circuits and the rudimentary level of the currently available fabrication and testing facilities. The objective of this paper is to review RSFQ device physics and also discuss in brief the prospects of future development of this technology in the light of the tradeoff between its advantages and handicaps.

2020 ◽  
Vol E103.C (10) ◽  
pp. 547-549
Author(s):  
Yoshinao MIZUGAKI ◽  
Koki YAMAZAKI ◽  
Hiroshi SHIMADA

2014 ◽  
Vol 4 (3) ◽  
pp. 9-13
Author(s):  
M. Balaji ◽  
◽  
B. Keerthana ◽  
K. Varun ◽  
◽  
...  

2021 ◽  
Vol 1889 (2) ◽  
pp. 022076
Author(s):  
Mustakim Jumaev ◽  
Mirzo Sharipov ◽  
Mirzokhid Rizoqulov

Cryogenics ◽  
1972 ◽  
Vol 12 (3) ◽  
pp. 234 ◽  
Author(s):  
J.M. Laplant ◽  
D.J. Flood

2014 ◽  
Vol 599-601 ◽  
pp. 1135-1138
Author(s):  
Chao Zhe Ma ◽  
Jin Song Du ◽  
Yi Yang Liu

At present, sub-micro-Newton (sub-μN) micro-force in micro-assembly and micro-manipulation is not able to be measured reliably. The piezoelectric micro-force sensors offer a lot of advantages for MEMS applications such as low power dissipation, high sensitivity, and easily integrated with piezoelectric micro-actuators. In spite of many advantages above, the research efforts are relatively limited compared to piezoresistive micro-force sensors. In this paper, Sensitive component is polyvinylidene fluoride (PVDF) and the research object is micro-force sensor based on PVDF film. Moreover, the model of micro-force and sensor’s output voltage is built up, signal processing circuit is designed, and a novel calibration method of micro-force sensor is designed to reliably measure force in the range of sub-μN. The experimental results show the PVDF sensor is designed in this paper with sub-μN resolution.


Sign in / Sign up

Export Citation Format

Share Document