MONITORING THE TOPOLOGY OF GROWING DYNAMICAL NETWORKS

2010 ◽  
Vol 21 (08) ◽  
pp. 1051-1063 ◽  
Author(s):  
ZHAOYAN WU ◽  
XINCHU FU ◽  
GUANRONG CHEN

In this paper, topology monitoring of growing networks is studied. When some new nodes are added into a network, the topology of the network is changed, which needs to be monitored in many applications. Some auxiliary systems (network monitors) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied to designing such network monitors. Based on the Lyapunov function method via constructing a potential or energy function decreasing along any solution of the system, and the LaSalle's invariance principle, which is a generalization of the Lyapunov function method, some sufficient conditions for achieving topology monitoring are obtained. Illustrative examples are provided to demonstrate the effectiveness of the new method.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmadjan Muhammadhaji ◽  
Zhidong Teng

Two classes of periodicN-species Lotka-Volterra facultative mutualism systems with distributed delays are discussed. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin and the Lyapunov function method, some new sufficient conditions on the existence and global attractivity of positive periodic solutions are established.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ke Ding ◽  
Xing Xu

This paper studies chaotic synchronization of modified discrete-time Tinkerbell systems. By constructing the Lyapunov function and using the linear feedback control, some synchronization criteria for modified discrete-time Tinkerbell systems are derived. The conservativeness of those synchronization criteria is compared. The effectiveness of derived results is demonstrated by six examples.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Zijian Liu ◽  
Chenxue Yang

We study a two-patch impulsive migration periodicN-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianbao Zhang ◽  
Zhongjun Ma ◽  
Jinde Cao

A recent research indicated that the corticocortical connectivity network of the cat possesses cluster structure and that each cluster in the network is scale-free and has a most connected hub. Motivated by that research, we slightly modify the network model and derive sufficient conditions for cluster synchronization of the modified network based on Lyapunov function method. The obtained results indicate that cluster synchronization can be induced by the hubs of the scale-free networks. In our opinion, the concept of hub-induced synchronization provides a better understanding of cluster synchronization in scale-free networks. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.


Author(s):  
Marat Rafikov ◽  
Jose´ Manoel Balthazar

In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Ro¨ssler system and the Duffing oscillator are provided to show the effectiveness of this method.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2110
Author(s):  
Yanjie Ji ◽  
Zhaoyan Wu

In this paper, outer synchronization of complex-variable networks with complex coupling is considered. Sufficient conditions for achieving outer synchronization using static impulsive pinning controllers are first derived according to the Lyapunov function method and stability theory of impulsive differential equations. From these conditions, the necessary impulsive gains and intervals for given networks can be easily calculated. Further, an adaptive strategy is introduced to design universal controllers and avoid repeated calculations for different networks. Notably, the estimation algorithms of the impulsive gains and intervals are provided. Finally, three numerical examples are performed to verify the effectiveness of the main results.


Filomat ◽  
2018 ◽  
Vol 32 (11) ◽  
pp. 3779-3789 ◽  
Author(s):  
Yadong Liu ◽  
Wenjun Liu

In this paper, we study the dynamic behavior and control of the fractional-order nutrientphytoplankton-zooplankton system. First, we analyze the stability of the fractional-order nutrient-plankton system and get the critical stable value of fractional orders. Then, by applying the linear feedback control and Routh-Hurwitz criterion, we yield the sufficient conditions to stabilize the system to its equilibrium points. Finally, Under a modified fractional-order Adams-Bashforth-Monlton algorithm, we simulate the results respectively.


Author(s):  
Xindong Si ◽  
Hongli Yang

AbstractThis paper deals with the Constrained Regulation Problem (CRP) for linear continuous-times fractional-order systems. The aim is to find the existence conditions of linear feedback control law for CRP of fractional-order systems and to provide numerical solving method by means of positively invariant sets. Under two different types of the initial state constraints, the algebraic condition guaranteeing the existence of linear feedback control law for CRP is obtained. Necessary and sufficient conditions for the polyhedral set to be a positive invariant set of linear fractional-order systems are presented, an optimization model and corresponding algorithm for solving linear state feedback control law are proposed based on the positive invariance of polyhedral sets. The proposed model and algorithm transform the fractional-order CRP problem into a linear programming problem which can readily solved from the computational point of view. Numerical examples illustrate the proposed results and show the effectiveness of our approach.


Sign in / Sign up

Export Citation Format

Share Document